141 results
Industry
PROJECT NUMBER • 2017-048
PROJECT STATUS:
COMPLETED

Improving mortality rate estimates for management of the Queensland Saucer Scallop fishery

This research was undertaken on the Queensland saucer scallop (Ylistrum balloti) fishery in southeast Queensland, which is an important component of the Queensland East Coast Otter Trawl Fishery (QECOTF). The research was undertaken by a collaborative team from the Queensland Department...
ORGANISATION:
Department of Primary Industries (QLD)
Environment
PROJECT NUMBER • 2017-047
PROJECT STATUS:
COMPLETED

Understanding environmental and fisheries factors causing fluctuations in mud crab and blue swimmer crab fisheries in northern Australia to inform harvest strategies

This project investigated relationships between environmental factors and harvests of crabs in the Gulf of Carpentaria (GoC), northern Australia. Desktop correlative analyses clearly indicated that recent fluctuations in the catches of Giant Mud Crabs in the GoC are most likely driven by...
ORGANISATION:
Department of Primary Industries (QLD)
Blank
Communities
PROJECT NUMBER • 2017-098
PROJECT STATUS:
COMPLETED

Southern Bluefin Tuna: Changing The Trajectory

Life on the Line is the true story of the Southern Bluefin Tuna, its biological traits and its history of exploitation and most recently its recovery. This documentary covers how research, managers and the fishing industry - commercial and recreational have contributed to the recovering status of...
ORGANISATION:
Australian Fisheries Management Authority (AFMA)
People
PROJECT NUMBER • 2017-097
PROJECT STATUS:
COMPLETED

Reducing bycatch using modifications to sweeps and lines anterior to the trawl mouth - collaboration with the Technical University of Denmark

Prawn trawling is among the world's least selective fishing methods and there has been a great deal of work done over the past few decades to develop modifications that reduce unwanted bycatches. Much of this work has focussed on modifications at, or near, the codend (at the aft section) of trawls,...
ORGANISATION:
IC Independent Consulting Pty Ltd
Industry

Opportunities and impacts of range extending scalefish species: understanding population dynamics, ecosystem impacts and management needs

Project number: 2018-070
Project Status:
Completed
Budget expenditure: $249,587.00
Principal Investigator: Sean Tracey
Organisation: University of Tasmania
Project start/end date: 31 May 2019 - 30 Nov 2020
Contact:
FRDC

Need

Species-level responses to ocean warming is a priority research area as they underpin the structure and function of marine ecosystems and the productivity of fisheries that operate within them.
There are a number of range extending species that have become increasingly abundant in Tasmanian waters, providing new fishing opportunities for recreational and, to a lesser extent, commercial fishers. Species in this group include Pink Snapper, King George Whiting and Yellowtail Kingfish. While King George Whiting are known to spawn off the north coast it is unclear as to whether the other species have or are likely to become established as self-sustaining populations in Tasmanian waters or simply persist as spill-over from populations that are centered off mainland Australia. If the former is the case, it will be especially important to consider population attributes such as growth, mortality and reproductive dynamics relevant to the Tasmanian populations when developing and refining management arrangements to maximise the opportunities these 'new' species bring.

In addition, the broader ecosystem impacts of such range extending species, including competition with resident species at similar trophic levels, are unknown but could have consequences for other recreationally and commercially important species. Understanding these relationships will have benefits for the assessment and management of the Tasmanian recreational fishery more generally.

Objectives

1. Develop a program for ongoing collection of biological samples and data of key range-shifting fish species using citizen science initiatives engaging with the recreational fishing community.
2. Develop geographically discrete life-history parameters for key range-shifting fish species in Tasmania to inform management decisions.
3. Determine the diet composition of key range-shifting fish species to refine parameterisation of an ecosystem model.
4. Utilise the Atlantis ecosystem model framework to predict ecological impacts of increasing abundance of key range-shifting fish species in Tasmania.
5. Develop species distribution models that utilise oceanographic climate change projections to predict the future presence and persistence of the key target species in Tasmania.

Final report

ISBN: 978-1-922708-28-1
Author: Alexia Graba-Landry
Final Report • 2022-05-12 • 13.57 MB
2018-070-DLD.pdf

Summary

This work set out to quantify the biology and diet of three key range-shifting species in Tasmania with both recreational and commercial fishery value. The project was heavily reliant on engagement from the recreational fishing community and multiple citizen science initiatives, as well as historical data.

The information collected was used in modelling to predict how suitable habitats for each species may shift under future climate change projections. The work also indicated the potential changes to the ecosystem (such as food web) if these species’ ranges were to move.

Environment
PROJECT NUMBER • 2023-205
PROJECT STATUS:
CURRENT

Role of marine reserves in sustainable management of Australia's ocean estate - review of the Heard Island and McDonald Islands bioregion

The statutory requirement to undertake a 10-year review of the Heard and McDonald Islands (HIMI) Marine Reserve led to a proposal to expand the HIMI marine reserve and include new National Park Zones (IUCN II) and Habitat Protection Zone (IUCN IV) arrangements. Subsequently, the total...
ORGANISATION:
TJB Management Pty Ltd
People

Aquatic Animal Health Training Scheme 2019-2022

Project number: 2019-148
Project Status:
Completed
Budget expenditure: $131,250.00
Principal Investigator: Nicholas J. Moody
Organisation: CSIRO Australian Animal Health Laboratory
Project start/end date: 6 Feb 2020 - 30 Aug 2022
Contact:
FRDC

Need

While the AAHTS has been in operation for 9 years, there remains a need for the continual education and training of aquatic animal health professionals to enhance their skills across a range of specialist disciplines. Based on the significant outcomes from the previous nine years of the AAHTS, the Department of Agriculture has contributed $75,000.00 (less $7,500.00 (10%) management fee, cash contribution to FRDC) to ensure that the AAHTS continues to be implemented for a further 3-year period (2019/20-2021/22) with matching funding anticipated from the FRDC Aquatic Animal Health and Biosecurity Subprogram. Thus, an application is needed to generate an agreement between CSIRO-AAHL and FRDC for continuation of AAHTS which would be administered as previously, i.e., by CSIRO-AAHL (rather than FRDC) through the FRDC Aquatic Animal Health and Biosecurity Subprogram.

Objectives

1. To improve the knowledge and skills in aquatic animal health management to support Australia’s fishing and aquaculture industry, including the aquarium sector
View Filter

Species

Organisation