31 results
Environment
PROJECT NUMBER • 2007-045
PROJECT STATUS:
COMPLETED

Rebuilding Ecosystem Resilience: assessment of management options to minimise formation of ‘barrens’ habitat by the long-spined sea urchin (Centrostephanus rodgersii) in Tasmania

By overgrazing seaweeds and sessile invertebrates, essentially back to bare rock, the advent of the long‐spined sea urchin Centrostephanus rodgersii in eastern Tasmanian waters poses a significant threat to the integrity, productivity and biodiversity of shallow (<40 m) rocky reef systems and the...
ORGANISATION:
University of Tasmania (UTAS)
Environment
PROJECT NUMBER • 1999-164
PROJECT STATUS:
COMPLETED

Application of molecular genetics to the Australian abalone fisheries: forensic protocols for species identification and blacklip stock structure

Of the nineteen abalone (Haliotidae) species recognised in Australian waters (Geiger 1999), ten are endemic and two dominate the commercial, recreational and illegal harvests in southern States: the blacklip abalone Haliotis rubra Leach and the greenlip abalone H. laevigata Donovan. A third species,...
ORGANISATION:
University of Tasmania (UTAS)
Environment
PROJECT NUMBER • 2011-087
PROJECT STATUS:
COMPLETED

Tactical Research Fund: trial of an industry implemented, spatially discrete eradication/control program for Centrostephanus rodgersii in Tasmania

The long-spined sea urchin, Centrostephanus rodgersii has expanded its distribution southwards from southern New South Wales, through Eastern Victoria, the Bass Strait Islands and down the east coast of Tasmania. In some areas of Tasmania abundance of C. rodgersii has increased substantially, even...
ORGANISATION:
University of Tasmania (UTAS)
Industry
PROJECT NUMBER • 2012-708
PROJECT STATUS:
COMPLETED

Seafood CRC: quantifying physiological and behavioural responses of cultured abalone to stress events

It is desirable for any primary producer to understand the health and welfare of their stock. This will ultimately enable optimal production and return on investment. The challenge in any aquaculture system is ‘observing’ the physiological and behavioural responses associated with environment,...
ORGANISATION:
University of Tasmania (UTAS)
Environment
PROJECT NUMBER • 2011-039
PROJECT STATUS:
COMPLETED

FRDC-DCCEE: preparing fisheries for climate change: identifying adaptation options for four key fisheries in South Eastern Australia

Over the next century, the marine ecosystems of south-eastern Australia are expected to exhibit some of the largest climate-driven changes in the Southern Hemisphere. The effects of these changes on communities and businesses will depend, in part, on how well fishing industries and resource managers...
ORGANISATION:
University of Tasmania (UTAS)
Industry
PROJECT NUMBER • 1999-162
PROJECT STATUS:
COMPLETED

Evaluating the effectiveness of marine protected areas as a fisheries management tool

Marine Protected Areas (MPAs) are being proclaimed around the world with the stated primary purposes of enhancing fisheries stocks and/or conserving marine biodiversity. In Australia, in response to a joint State/Commonwealth agreement to establish a National Representative System of MPAs (NRSMPA)...
ORGANISATION:
University of Tasmania (UTAS)
View Filter

Organisation