54 results

SCRC: Development of germ cell transplantation technology for the Australian aquaculture industry

Project number: 2011-730
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Abigail Elizur
Organisation: University of the Sunshine Coast (USC)
Project start/end date: 14 Sep 2011 - 29 Jan 2014
Contact:
FRDC

Need

Currently SBT is being bred in an expensive on-shore facility at Arno Bay, where a single tank holds a limited number of broodstock, which spawn for a limited period of time. In order to expand on the
production of SBT seed, additional facilities/tanks at the costs of millions of dollars will be required and
sourcing additional 12 year old broodstock. Therefore there is a need to look at alternative approaches
for SBT broodstock management. This proposal explores the application of a highly innovative
approach - that is the use of fish surrogates to produce SBT. By identifying the right surrogate for SBT
and developing the specific know-how with respect to optimal germ cell management, SBT seed could
be produced in a fast maturing small host. This would completely overcome the need for large,
expensive broodstock facilities and long term holding of broodstock, while ensuring a continuous
supply of SBT seed, which is much needed for larval rearing R&D and commercialization. This
application relates to the overall investment in closing of the life-cycle of SBT.

Final report

ISBN: 978-0-9804744-3-5
Authors: Abigail Elizur Erin Bubner Ido Bar Andre Smith Scott Cummins Luke Dutney and Peter Lee
Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Final Report • 2014-05-01 • 6.61 MB
2011-730-DLD.pdf

Summary

The project was designed to explore the application of surrogate technology as an alternative broodstock system for the Southern Bluefin Tuna (SBT). Surrogate technology, also known as germ cell transplantation, uses germ cells from a donor species, in this case SBT, and transplants them into a host species, the surrogate. The germ cells can migrate and form part of the host’s gonad, resulting in the production of the donor sperm and egg by the host gonad.

We have explored the suitability of the Yellowtail Kingfish (YTK) as a surrogate for SBT. Over 12,000 YTK larvae were injected with SBT germ cells, and 3-4 weeks after transplantation we could observe the migration and colonisation of the SBT cells (which are labelled with red florescence dye for ease of detection) to the YTK genital ridge, confirming SBT cells responded to YTK migration cues. Transplanted larvae were raised and samples assessed a few months later, however so far we could not detect SBT cells in the maturing YTK, indicating that whilst SBT germ cells respond to the YTK migration cues we cannot confirm proliferation of the germ cells in the YTK host at this stage. About 100 YTK approaching one year of age are maintained at CST and will need to be examined for the presence of SBT sperm or eggs once they reach sexual maturity.

Blank
Blank
PROJECT NUMBER • 2011-712
PROJECT STATUS:
COMPLETED

SCRC: Masters: Strategic Planning Practices used by Australian Wild Harvest Fishers

The small business sector is a foundational element of national economic performance and the provision of employment to millions of workers globally. There is considerable research literature regarding strategy and strategic planning in the context of large, small and micro businesses. However,...
ORGANISATION:
University of the Sunshine Coast (USC)
Blank
PROJECT NUMBER • 2010-781
PROJECT STATUS:
COMPLETED

SCRC: PhD: Broodstock conditioning and maturation of sandfish (Holothuria scabra) and optimisation of spawning induction techniques.

This thesis reports on an investigation of brood stock conditioning methods for the tropical sea cucumber Holothuria scabra. The project aims to advance the field of sea cucumber aquaculture by developing improved methods for the conditioning and spawning of brood stock. There is great demand for...
ORGANISATION:
University of the Sunshine Coast (USC)
Industry
PROJECT NUMBER • 2010-780
PROJECT STATUS:
COMPLETED

Seafood CRC: PhD: Molecular and quantitative genetics studies to improve breeding programs for key Australian aquaculture species

Fat or oil content in fish is an economically important trait as it is one of the primary determinants of flesh quality and consumer perception of the end-product. The market value of a carcass or fillets, particularly of large species such as kingfish and tuna, can be strongly influenced by the...
ORGANISATION:
University of the Sunshine Coast (USC)
Industry
PROJECT NUMBER • 2010-777
PROJECT STATUS:
COMPLETED

Seafood CRC: identification of the core leadership group and network structure of East Coast Trawl to develop, implement and evaluate strategic opportunities

The East Coast Trawl Fishery (ECTF) is spread over a large geographical area (from the Torres Strait to the Queensland/New South Wales border), and comprises a large number of small independent fishers. Importantly, it is one of Australia's largest fisheries and has an annual volume of 10,000 tonnes...
ORGANISATION:
University of the Sunshine Coast (USC)
View Filter

Organisation