40,539 results
Environment
PROJECT NUMBER • 2001-061
PROJECT STATUS:
COMPLETED

Identifying nursery areas used by inner bay and oceanic snapper stocks in the Shark Bay region, in relation to the effect of prawn trawling on inner bay snapper stocks

This study examined two aspects of the chemical composition of snapper otoliths from Shark Bay Western Australia as an aid to determining the spatial relationship among juveniles and to better understand the spatial relationships between juveniles and adults. Otoliths were collected from...
ORGANISATION:
Department of Primary Industries and Regional Development (DPIRD) WA
SPECIES
Environment

RRD4P: FRDC Contribution: Closing the Loop: Black Soldier Fly technology to convert agricultural waste

Project number: 2019-172
Project Status:
Completed
Budget expenditure: $90,000.00
Principal Investigator: Denise Woods
Organisation: Australian Pork Ltd (APL)
Project start/end date: 31 Jan 2020 - 29 Jun 2022
:

Need

Black soldier fly farming (BSF) is an emerging industry that provides a low-cost waste management solution for converting agricultural waste into high quality fertiliser (BSF castings or frass) and protein (BSF larvae as animal feed). However, the BSF products cannot be developed further in Australia until biosecurity, environmental and food safety risks are addressed. This collaborative project between industry, government and researchers will a) develop frass as a slow-release, granulated fertilizer product that is safe to handle, transport and apply; b) quantify the biosecurity and environmental risks associated with applying frass to cropping and c) overcome the barriers to adoption by involving policy makers and farmers during trials and assisting early adopters through extension activities. Adoption of BSF technology and its products has potential to increase productivity and profitability via reduced input costs and alternative revenue streams on agricultural enterprises.

Primary industries produce large volumes of waste by-products that often contain significant amounts of macro and micro-nutrients that are typically in a dilute, nutritionally unbalanced form for agricultural crops (Abbott et al., 2018). The handling, management and application of wastes are costly and time consuming for producers whilst transportation and reuse off-farm is currently impractical and uneconomical. Poor livestock and waste management practices in the past have led to stable fly (as opposed to the Black Soldier Fly which is not a pest) outbreaks, odour, GHG emissions and nutrient leaching and runoff into waterways. This has resulted in stringent application restrictions being imposed for manure application through Health Regulations 2001 and through the Biosecurity and Agriculture Management Act 2007 (BAM Act). These regulations on manure disposal have led to loss of important marketing options causing significant cost increases (> $4 million annually). Currently, composting to Australian Standards on-site is both costly and lengthy and does not have sufficient scale, capacity or end market to process the entire allotment of manure. Consequently, large quantities of manure (225,000m3 of manure per annum) are transported long distances to broadacre agricultural zones for pasture and crop fertilisation at a significant cost to producers.
Page 15 of 21
BSF technology has potential to improve profitability and sustainability for livestock and cropping industries by significantly reducing waste volumes whilst creating a high value fertiliser product. Once fully commercialised, BSF cultivation could process hundreds of tonnes of waste per day, requiring only a small amount of space. The BSF technology is both suitable for medium to large enterprises and provides more flexibility for smaller enterprises or regional hubs. The BSF reproduces rapidly, have high feed conversion efficiency and produce half a tonne of frass for every tonne of waste processed (Moula et al., 2018). The BSF process has also been shown to significantly reduce the biosecurity and environment risks associated with waste management. The BSF larvae outcompete stable fly, decrease the nutrient content (total N by 55 and P by 45%, respectively) and lower pathogen loading of E. coli and Salmonella levels (Lui et al., 2008; Erickson et al., 2004). In addition, BSF have been shown to reduce antibiotics and antibiotic resistant genomes in waste substrates (Cai et al., 2018). Therefore, the resulting frass fertiliser has potential to mitigate and lower the risk of contamination, GHG emissions, nutrient leaching and runoff. Developing the frass as a high quality fertiliser would open new markets and create new revenues for profit, making BSF more economically viable for the livestock industries. However, the agronomic and economic value of frass fertiliser as well as the environmental and biosecurity risks of their application needs to be evaluated to increase adoption. Also, the frass fertilizer products must be tailored to crop nutrient requirements, machinery and operations. In addition, research is needed to understand the mode and mechanisms of delivery so that the frass can be developed as a slow release fertiliser to minimise the loss of nutrients through runoff, leaching and GHG emissions. Further research on the social license and regulatory

Objectives

1. Investigate the development of Black Soldier Fly Farming (BSF) castings and larvae into high quality, low-cost, slow-release, granulated fertilizer products, that are safe to handle, transport and apply
2. Screening and optimisation of waste streams - Characterise all waste inputs to provide a profile of nutritional value and properties
3. Economic feasibility, socio-economic costs and benefits, and market evaluation
4. Assess the biosecurity risks of Black soldier fly products (frass and larvae)
5. Assess the environmental risks of Black soldier fly products (frass and larvae)
6. Assess the benefits of using BSF frass and/or larvae as a soil improver
7. Develop a granulated and/or pelletised fertiliser product
8. Develop a slow release enhanced efficiency fertiliser product
9. Develop a high quality animal feed product from approved waste materials (horticulture and meeting processing)

Final report

Authors: Dr. Sasha Jenkins and A/Prof. Marit Kragt Dr Matt Redding
Final Report • 2023-02-28 • 5.10 MB
2019-172-DLD.pdf

Summary

This project investigated BSF waste treatment technology to provide a new waste management options that is more sustainable, productive and profitable for the primary industries. It explored the conversion of low-value agricultural waste products into high quality, innovative fertilisers and soil improvers. This will potentially create new markets for primary industries leading to decrease primary production costs. The project also sought to overcome key barriers to adoption of novel fertilizers/soil improvers by engaging with regulatory bodies via project activities.
Final Report

Summary

Black soldier fly farming (BSF) is an emerging industry that provides a low-cost waste management solution for converting agricultural waste into high quality fertiliser (BSF castings or frass) and protein (BSF larvae as animal feed).
Industry
PROJECT NUMBER • 2017-019
PROJECT STATUS:
COMPLETED

Freshwater fish attracting structures (FAS): Evaluating a new tool to improve fishing quality and access to fisheries resources in Australian impoundments

This document has been compiled from various sources and, to the authors’ knowledge, represents the best advice currently available regarding the use of fish attracting structures to improve recreational angling in Australian impoundments. Although the principles outlined in this document may...
ORGANISATION:
Department of Primary Industries (QLD)
Environment
PROJECT NUMBER • 2008-103
PROJECT STATUS:
COMPLETED

Tactical Research Fund: Adapting to change - minimising uncertainty about the effects of rapidly-changing environmental conditions on the Queensland Coral Reef Fin Fish Fishery

With the severity and intensity of tropical cyclones predicted to increase with global climate change (Webster et al. 2005), the need to understand the effects of these events on fisheries production is paramount. The northern tropical margin of the Australian continent is subject to tropical...
ORGANISATION:
James Cook University (JCU)

Maximising net economic returns from a multispecies fishery

Project number: 2015-202
Project Status:
Completed
Budget expenditure: $229,305.00
Principal Investigator: Sean Pascoe
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 30 Jun 2015 - 28 Sep 2017
:

Need

An objective of the Fisheries Management Act 1991 is ‘maximising the net economic returns to the Australian community from the management of fisheries’, which has been interpreted as achieving the biomass that, on average, produces maximum economic yield (BMEY) in the Commonwealth Fisheries Harvest Strategy 2007 and the more recent Borthwick (2012) and DAFF (2013) Reviews cited earlier.

To date, only two Australian fisheries (the Northern Prawn Fishery (Punt et al 2011) and the Great Australian Bight trawl fishery (Kompas et al 2013) have models suitable for assessing MEY. These are data rich fishery, both in terms of economic and biological information. Methods for estimating proxy target reference points in single and multispecies fisheries have recently been developed (FRDC 2011/200 and FRDC 2010/044) but not yet applied in any fishery. Other approaches have also been developed elsewhere (e.g. FRDC 2008/08). These methods have not accounted for environmental externalities, particularly in terms of bycatch and discards, which may affect the optimal outcome. A range of other complications were also identified during a technical review of economic issues (FRDC 2012/225) and the review of the Commonwealth Policy on fisheries bycatch.

Developing harvest strategies that maximise net economic returns is a different problem to that of identifying targets. The latter is an endpoint while the former is the process to achieve the end point. The purpose and aim of this project is to establish a practical and cost effective method for managing a multispecies fishery towards maximising net economic returns as a whole, taking into account non-target catches.

Objectives

1. Development of a methodology for maximising net economic return to a multispecies fishery as a whole, and with regard to by-catch and discard species
2. Development of a framework to operationalise the methodology into fisheries management objectives

Final report

ISBN: 978-1-4863-1076-0
Authors: Pascoe S. Hutton T. Hoshino E. Sporcic M. Yamazaki S. and Kompas T.
Final Report • 2018-06-01 • 1.45 MB
2015-202-DLD.pdf

Summary

Achieving fishery MEY may result in a reduction in net economic returns in a broader sense if the loss to consumers exceeds the gain to the industry. Such a loss may occur if supplies to the local market are reduced and prices paid by consumers increase. This results in a transfer of benefits from consumers to producers, which is considered undesirable in itself. However, if the loss to consumers is greater than the gain to producers then overall there is a loss of net economic returns. Similarly, the disutility associated
with bycatch in fisheries may also affect our interpretation of “optimal” yields if non‐monetary values are assigned. The “generic” multispecies bioeconomic model was used to estimate the impact on target fishing mortality rates of broadening the consideration of net economic returns to include also changes in consumer surplus and inclusion of non‐market values associated with bycatch. The model is run stochastically while maximising profit but varying the number of species caught, their biological characteristics and prices, fishing costs, price flexibilities, bycatch rates and values.

The results of the analysis were largely as expect, namely that including consumer benefits into the definition of MEY resulted in a higher optimal level of fishing effort and yield, while including non‐market costs associated with discards resulted in a lower optimal level of fishing effort and yield. The degree to which these factors affected the definition of MEY was, unsurprisingly, related to their overall magnitude relative to the benefits to the fishery.

Implementing MEY, once identified, also has several challenges. The study considered a range of harvest control rules, as well as other potential management options. The results of the model analysis suggest that “hockey‐stick” harvest control rules in multispecies fisheries may overly restrict the catch of species that are currently above their target biomass. Given the higher abundance, catch of these species is likely to result in increased discarding and lower economic returns than might otherwise be achieved. An alternative harvest control rule that allowed higher than “optimal” fishing mortality rates for species that were above their target biomass resulted in less discarding and higher economic returns.

Having quota on too many species may be counterproductive, as the fishery is largely constrained by the quota for the main species. Imposing quotas also on secondary species can result in a situation where a minor species becomes a “choke” species, restricting the total fishery for little benefit. Reducing the number of species subject to quota constraints to only those that were most important (in terms of revenue) resulted in improved economic performance of the fishery as well as lower levels of discarding. However, in the model changes in targeting ability of the fleet was not considered, so monitoring of fisher behaviour in response to proposed management regimes that only have a few species under quota would
be essential.
View Filter

Species

Organisation