Preparation of a set of guidelines on the procedures necessary to carry out baseline studies at any Australian coastal site
Prawn farm effluent: origin, composition and treatment
Cumulative Impact Risk Assessment Tool for Aquaculture in Australia
Difficulties with current legislation in Australia at State and Federal level make it challenging for marine farms to protect themselves, but equally for the community to have faith that aquaculture development is not harming the marine environment. An example from Tasmania is the recent contamination of Macquarie Harbour, whereby tailings from Copper Mines Tasmania (CMT) dam in Queenstown entered the harbour and undoubtedly caused environmental harm to salmon and other species. Because CMT and salmon farmers operate under different Acts CMT was not responsible for the incident but rather the government. Consequently, no investigation or clean-up ensued.
Additionally, the scope of statutory tools, such as EIS under the Tasmanian Marine Farm Planning Act 1995, is not regional and does not consider the compound interactions of and on production activities. A good example is the recent Storm Bay salmon farming expansion; while the EPBC listed handfish species in Tasmania were listed in the marine farming development plan, with a brief context, management of these species was not considered in the EIS because that process only includes direct impact of the lease position. Arguably, cumulative impacts from all development in the area will have varying impacts on the species, impacts which are not being considered under current government legislation, but are potentially the source of public ire.
For aquaculture to pursue sustainable efforts environmentally, economically and socially in the increasingly crowded near shore space requires proactive planning and transparency that is not currently possible given existing assessment tools. In particular, assessment of cumulative impacts must be addressed. Cumulative impact assessments (CIA) are gaining momentum across multiple industries due to a recognised need to apply them in the pursuit of sustainable management. CIAs are being undertaken with the protection of marines resources at front of mind, but so far there has been little consideration of aquaculture. An approach to CIA that makes aquaculture the centre point is required if we are to consider its impacts or conversely, its effectiveness.
Immuno-staining of a ciliate protozoan causing significant mortalilty of farmed tuna: the development of a rapid identification technique which will enable improved farm management practices to be implemented to minimise fish mortality
Final report
An immunofluorescent staining technique for the rapid detection of the ciliate protozoan Uronema sp. was developed during 1995 and 1996. The initial test was developed using seven cultures of Uronema sp. from various sources which were identified as Uronema nigricans by microscopical and histochemical techniques. These seven strains were maintained in a medium containing bacteria as their food source. Antisera against two of the strains were raised in rabbits and against one in sheep. These were then adsorbed with the bacteria and unrelated ciliates to eliminate cross-reactivity.
More recently, an axenic (bacteria-free) culture of Uronema sp. has been accomplished and high-titre antisera raised in rabbits for use in the immunofluorescent staining technique.
Arrangements have been made to have a monoclonal antibody to the axenic Uronema prepared at the Atlantic Veterinary College, University of Prince Edward Island in Canada. This will then provide a reliable supply of highly specific antibody for future research in this area.
The substantial southern bluefin tuna mortality event in 1996 impacted on the delivery of the project objectives, particularly those associated with the application of the immuno-staining technique developed to:
- screen potential sources of infection associated with farming tuna; and based on this
- provide advice to farmers on how to improve farm management techniques so as to minimise infections.
Keywords: Uronema, aquaculture, southern bluefin tuna.