Development of a temperature monitoring framework for Tasmania's seafood industry during marine heatwaves
Investigating drivers of environmental change in Pipe Clay Lagoon
Coastal lagoon systems in Tasmania form a fundamental part of coastal ecosystems. Healthy lagoons support local biodiversity, and play a key role in nutrient cycling and flood protection. They provide opportunities for sustainable aquaculture, fishing and tourism, while also being appreciated for their recreational amenity and cultural values. Sustainable management of coastal lagoons is essential to environmental and socioeconomic development.
There is limited information about the ecosystem drivers that are influencing the changes being observed in Pipe Clay Lagoon, leading to knowledge gaps in decision making tools and monitoring strategies required to identify and mitigate these changes. The proposed application is a multifaceted approach to investigate the environmental drivers of change in Pipe Clay Lagoon. The findings can then be used to provide valuable guidance for the management and conservation of other coastal lagoons in Tasmania facing similar challenges, providing a model for proactive monitoring and ongoing sustainability.
The FRDC has a responsibility to ensure that research is undertaken to assist in the management of fisheries and aquaculture resources for ongoing sustainability. The changes being experienced in Pipe Clay Lagoon will have implications on the availability and suitability of the lagoon as a sustainable aquaculture site. The planned approach and objectives of the application align with the FRDC’s R&D Plan for 2020-2025 through:
- Building people's capacity and capability
- Ensuring that resulting knowledge and innovation is adopted for impact through awareness of the needs of the ‘adopter’, local context and effective networking
- Continual improvement and collaboration of industry and community to deliver competitive advantage, healthier ecosystems and community support
- Provision of foundational information
Equally and importantly the application aligns with the NRM Strategy for Southern Tasmania 2030 for Pipe Clay Lagoon and similar systems in that wetland health is improved for socio-economically important systems by working with key partners and encouraging investment in monitoring, land and water management practices and on-ground works.
The enthusiasm of those engaged in the stakeholder consultation process was a strong indication of the need, interest and urgency of the application.
Understanding of spatial extent, infection window and potential alternative hosts for the oyster disease QX in Port Stephens
Establishing a national end of life fishing/aquaculture gear recovery system for Australia
Building on the circularity discussions and work being undertaken by FRDC and the industry, this project seeks to undertake the legwork required to establish a nationwide on-demand End of life (EOL) fishing gear recovery system for Australia and pilot it in key locations. The materials that many nets and ropes are made of are highly valuable and recyclable and in fact in many other countries, is already being recycled or remanufactured. Until now, having a national system has been cost prohibitive due to the large distances and need for economies of scale and limited local buyer interest. As a part of the national targets set by the Australian Government relating to plastics use and recycling, commercial fishing and aquaculture sectors have been exploring how to move to a circular economy model and reduce plastic inputs through a variety of projects run by FRDC and others. However, with fishing gear the biggest plastic polymer input, and contamination challenges, there has yet to be a suitable system established.
This project seeks to enable the opportunities that addressing EOL gear provides in Australia to the commercial fishing and aquaculture sector through the establishment of an effective EOL fishing gear recovery system for the country to reduce the landfill costs to industry. It seeks to build on the learnings from previous projects as well as the ten years of experience of our partner Bureo has in in operating an EOL fishing gear recovery program. Bureo currently have an EOL gear recovery system active in 9 countries.
The key objectives are:
● By the end of 2026 there is an effective end-of-life fishing/aquaculture gear recovery system implemented across key fishing ports, and key aquaculture centres benefiting regional communities and fisheries conservation and assisting the Australian Government to address plastic recovery/recycling targets.
● By the end of 2024, the enabling environment for an effective and fit for purpose EOL fishing/aquaculture gear recovery system is in place within Australia, with commencement of recycling underway in key pilot locations.