19 results
Industry

Energy use and carbon emissions assessments in the Australian fishing and aquaculture sectors: Audit, self-assessment and guidance tools for footprint reduction

Project number: 2020-089
Project Status:
Completed
Budget expenditure: $98,500.00
Principal Investigator: Robert A. Bell
Organisation: Blueshift Consulting
Project start/end date: 21 Feb 2021 - 23 Jul 2021
Contact:
FRDC

Need

As identified in the EOI scope and from previous FRDC and other research, there are multiple needs for further information on energy use and greenhouse gas (GHG) emissions in the Australian fisheries and aquaculture sectors (F&A).
Firstly, at the top-level, a national account of these sector’s performance is necessary to provide a clear determination of the overall F&A contribution within the Agriculture, Forestry & Fishing Industry classification (AFF Industry) classification within National Inventory Data. The AFF Industry is second largest emissions sector and there is a need to disaggregate the F&A sector from the broader agricultural data, and to also develop industry baselines against which further performance can be measured (and potentially benchmarked against other sectors).
Second, there is a need for sub-sectors (specific managed fisheries or industry groups) as well as individual companies to be able measure, assess and then potentially manage their own energy use and emissions.
Finally, once companies, subsectors and the F&A sectors have data, there is a need for education and tools to assist them to improve energy efficiency and profitability, lower emissions and related risks but also importantly how to create positive engagement with stakeholders, particularly customers becoming more discerning in product selection based on carbon footprint, to maintain competitiveness in consumer protein selection decision-making.

Objectives

1. Program 1: Establish energy use and GHG profile of Australian F&A sectors
2. Program 2: Develop and self-assessment tool for Australian F&A sectors energy efficiency and GHG
3. Program 3: Develop a toolbox and examples for emissions reduction opportunities in the fisheries & aquaculture sectors

Final report

ISBN: 978-0-646-86114-2
Author: Robert A. Bell
Final Report • 2022-05-31 • 2.58 MB
2020-089_DLD.pdf

Summary

This project is the first examination of the total carbon emissions of the Australian fishing and aquaculture (F&A) sectors and component seafood production industries. To date, some work had been done on energy consumption and efficiency improvements, but the carbon emissions of the Australian F&A sectors had never been calculated.
 
In Australia’s National Greenhouse Accounts, emissions from the F&A sectors are currently included within the aggregated ‘agriculture, forestry and fishing’ segment. This segment is the third largest in Australia’s inventory, and the ‘fishing industry’ data is overwhelmed within the large, aggregated datasets of these combined sectors and therefore often unintentionally overlooked.
 
However, measuring the carbon footprint of the F&A sectors was a complicated task that required an account of all the emissions generated directly and indirectly by the sectors. This included fuel burnt directly to power fishing vessels, to purchased electricity, refrigeration emissions and the emissions from services and products bought from external suppliers such as bait and aquaculture feed. The study measured the carbon emissions and energy use of Australia’s largest F&A producer industries, which together constitute about 82% of Australia’s domestic seafood production by gross value of production (GVP). While some of the other industries that make supply chain inputs to the F&A sectors are discussed (such as aquaculture feeds and fishing bait), the project focus is on the Australian seafood primary producers.
 
The information is a vital step in providing a competitive advantage for seafood as a low- emissions protein. Seafood consumers are increasingly wanting to know the stories behind the products they’re buying, including efforts by fishers and farmers to reduce their carbon footprint. It also highlights how seafood production may need to adapt in the future. 
 
As part of the project work, three GHG emissions calculator tools were developed to help fishers and farmers better understand what drives their GHG emissions and how to measure them. And once they have been measured, what can be done to better manage emissions, and utilise the information in their operations and customer discussions.
 
The project has identified five recommendations and opportunities for government departments and agencies to update and improve their GHG emissions reporting methodologies for the fishing and aquaculture sectors.
Blank
PROJECT NUMBER • 2018-125
PROJECT STATUS:
COMPLETED

Evaluation of practical technologies for Perfluoroalkyl (PFA) remediation in marine fish hatcheries

Per- and poly-fluoroalkly substances (PFASs) are now emerging as pollutants with potentially catastrophic impact on aquaculture facilities. Two key research institutes, Port Stephens Fisheries Institute (PSFI) in NSW and Australian Centre for Applied Aquaculture Research (ACAAR) in Western Australia...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Industry
PROJECT NUMBER • 2019-172
PROJECT STATUS:
COMPLETED

RRD4P: FRDC Contribution: Closing the Loop: Black Soldier Fly technology to convert agricultural waste

This project investigated BSF waste treatment technology to provide a new waste management options that is more sustainable, productive and profitable for the primary industries. It explored the conversion of low-value agricultural waste products into high quality, innovative fertilisers and soil...
ORGANISATION:
Australian Pork Ltd (APL)
Industry
Industry
PROJECT NUMBER • 2004-237
PROJECT STATUS:
COMPLETED

Aquaculture Nutrition Subprogram: assessment of growth performance under limiting environmental conditions

This research has advanced our understanding of how fish growth is influenced by nutrition, by environment and by the interaction between nutritional and environmental factors. When the research started the majority of nutrition research considered the performance of feeds under optimum...
ORGANISATION:
University of Tasmania (UTAS)
Industry
PROJECT NUMBER • 2017-170
PROJECT STATUS:
COMPLETED

Real time monitoring of water quality and mechanisation of pond management to boost productivity and increase profit

Maintenance of adequate levels of dissolved oxygen (DO) are critical for the health and production of aquaculture species. In barramundi (Lates calcarifer) pond aquaculture the use of 24 hr/7 day mechanical aeration via paddlewheels represents a significant energy cost to companies,...
ORGANISATION:
James Cook University (JCU)
SPECIES
Industry