16 results
Industry
PROJECT NUMBER • 2017-048
PROJECT STATUS:
COMPLETED

Improving mortality rate estimates for management of the Queensland Saucer Scallop fishery

This research was undertaken on the Queensland saucer scallop (Ylistrum balloti) fishery in southeast Queensland, which is an important component of the Queensland East Coast Otter Trawl Fishery (QECOTF). The research was undertaken by a collaborative team from the Queensland Department...
ORGANISATION:
Department of Primary Industries (QLD)
Environment
PROJECT NUMBER • 2017-055
PROJECT STATUS:
COMPLETED

NCCP: Expanded modelling to determine anoxia risk in main river channel and shallow wetlands

This investigation was undertaken by the University of Adelaide and the University of Western Australia as a part of the research priorities for the National Carp Control Plan. While proposed biological control agents to reduce carp numbers may have positive impacts to aquatic ecosystems, it is...
ORGANISATION:
University of Adelaide
Environment
PROJECT NUMBER • 2019-212
PROJECT STATUS:
COMPLETED

Compilation of information for the US Marine Mammal Protection Act Comparability Finding process

Recent changes to legislation in the United States (US) requires that nations importing seafood must demonstrate that they have a regulatory program for reducing marine mammal bycatch that is comparable in effectiveness to the US standards under the ‘Fish and Fish Product Import...
ORGANISATION:
Alice Ilona Mackay
Environment
PROJECT NUMBER • 2017-082
PROJECT STATUS:
COMPLETED

Ensuring monitoring and management of bycatch in Southern Rock Lobster fisheries is best practice

Bycatch is an important issue in fisheries worldwide, with the impacts of fishing activities on non-targeted species and the wider marine environment receiving increasing public attention. Issues such as the potential wastage of resources through discarding of unwanted catch, ecological impacts on...
ORGANISATION:
University of Tasmania (UTAS)
Industry
PROJECT NUMBER • 2017-170
PROJECT STATUS:
COMPLETED

Real time monitoring of water quality and mechanisation of pond management to boost productivity and increase profit

Maintenance of adequate levels of dissolved oxygen (DO) are critical for the health and production of aquaculture species. In barramundi (Lates calcarifer) pond aquaculture the use of 24 hr/7 day mechanical aeration via paddlewheels represents a significant energy cost to companies,...
ORGANISATION:
James Cook University (JCU)
SPECIES
Adoption
PROJECT NUMBER • 2018-049
PROJECT STATUS:
COMPLETED

A Better Way to Fish: testing the feasibility of tunnel net ‘fish trap’ gear in North Queensland

This study found that tunnel nets are technically feasible in this location. In spite of the weather conditions, the fishing gear remained intact and successfully captured significant numbers of marketable fishes. Importantly, SOCI species were released alive and in excellent condition, as were...
ORGANISATION:
James Cook University (JCU)
Blank
PROJECT NUMBER • 2018-125
PROJECT STATUS:
COMPLETED

Evaluation of practical technologies for Perfluoroalkyl (PFA) remediation in marine fish hatcheries

Per- and poly-fluoroalkly substances (PFASs) are now emerging as pollutants with potentially catastrophic impact on aquaculture facilities. Two key research institutes, Port Stephens Fisheries Institute (PSFI) in NSW and Australian Centre for Applied Aquaculture Research (ACAAR) in Western Australia...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Environment
Industry

Opportunities and impacts of range extending scalefish species: understanding population dynamics, ecosystem impacts and management needs

Project number: 2018-070
Project Status:
Completed
Budget expenditure: $249,587.00
Principal Investigator: Sean Tracey
Organisation: University of Tasmania
Project start/end date: 31 May 2019 - 30 Nov 2020
Contact:
FRDC

Need

Species-level responses to ocean warming is a priority research area as they underpin the structure and function of marine ecosystems and the productivity of fisheries that operate within them.
There are a number of range extending species that have become increasingly abundant in Tasmanian waters, providing new fishing opportunities for recreational and, to a lesser extent, commercial fishers. Species in this group include Pink Snapper, King George Whiting and Yellowtail Kingfish. While King George Whiting are known to spawn off the north coast it is unclear as to whether the other species have or are likely to become established as self-sustaining populations in Tasmanian waters or simply persist as spill-over from populations that are centered off mainland Australia. If the former is the case, it will be especially important to consider population attributes such as growth, mortality and reproductive dynamics relevant to the Tasmanian populations when developing and refining management arrangements to maximise the opportunities these 'new' species bring.

In addition, the broader ecosystem impacts of such range extending species, including competition with resident species at similar trophic levels, are unknown but could have consequences for other recreationally and commercially important species. Understanding these relationships will have benefits for the assessment and management of the Tasmanian recreational fishery more generally.

Objectives

1. Develop a program for ongoing collection of biological samples and data of key range-shifting fish species using citizen science initiatives engaging with the recreational fishing community.
2. Develop geographically discrete life-history parameters for key range-shifting fish species in Tasmania to inform management decisions.
3. Determine the diet composition of key range-shifting fish species to refine parameterisation of an ecosystem model.
4. Utilise the Atlantis ecosystem model framework to predict ecological impacts of increasing abundance of key range-shifting fish species in Tasmania.
5. Develop species distribution models that utilise oceanographic climate change projections to predict the future presence and persistence of the key target species in Tasmania.

Final report

ISBN: 978-1-922708-28-1
Author: Alexia Graba-Landry
Final Report • 2022-05-12 • 13.57 MB
2018-070-DLD.pdf

Summary

This work set out to quantify the biology and diet of three key range-shifting species in Tasmania with both recreational and commercial fishery value. The project was heavily reliant on engagement from the recreational fishing community and multiple citizen science initiatives, as well as historical data.

The information collected was used in modelling to predict how suitable habitats for each species may shift under future climate change projections. The work also indicated the potential changes to the ecosystem (such as food web) if these species’ ranges were to move.