110 results
Industry
PROJECT NUMBER • 2018-102
PROJECT STATUS:
COMPLETED

Understanding Ostreid herpesvirus type 1 risk: alternative hosts and in situ hybridisation

South Australia (SA) has a large edible oyster industry primarily growing Pacific oysters (Crassostrea gigas). The industry is regionally-based, an important employer and a substantial contributor to regional economies. Pacific oyster mortality syndrome (POMS) is a serious infectious disease of C....
ORGANISATION:
Flinders University
Industry
PROJECT NUMBER • 2018-097
PROJECT STATUS:
COMPLETED

Survey of Enterprise-level Biosecurity across the Australian Aquaculture Industry

The Australian Government Department of Agriculture and Water Resources (the department) commissioned the independent research company Instinct and Reason to conduct a survey aimed at farm owners/managers in the Australian aquaculture industry. The survey aimed to investigate the level of...
ORGANISATION:
Instinct and Reason
Industry
PROJECT NUMBER • 2018-090
PROJECT STATUS:
COMPLETED

Improving early detection surveillance and emergency disease response to Pacific Oyster Mortality Syndrome (POMS) using a hydrodynamic model for dispersion of OsHV-1

Rapid predictive capability of viral spread through water during an aquatic disease outbreak is an epidemiologist’s dream, and up until now has not been achievable. A biophysical particle tracking model for Ostreid herpesvirus 1 microvariant (OsHV-1) that causes POMS was developed to determine...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
Industry
PROJECT NUMBER • 2018-031
PROJECT STATUS:
COMPLETED

Assessing the Risk of Pathogenic Vibrio Species in Tasmanian Oysters

The South Australian Research and Development Institute (SARDI) in collaboration with the Tasmanian oyster industry and regulators, University of Tasmania and Plant and Food Research New Zealand undertook a survey of significant foodborne Vibrio species (Vibrio parahaemolyticus and Vibrio...
ORGANISATION:
University of Adelaide
Adoption
PROJECT NUMBER • 2017-233
PROJECT STATUS:
COMPLETED

Future Oysters CRC-P Communication and Adoption

The Future Oysters CRC-P project (CRC-P 2016-553805; Future Oysters) was funded by the Australian Government’s Business Cooperative Research Centres (CRC) Program, which is managed by the Department of Industry, Innovation and Science (DIIS). The Future Oysters CRC-P project was developed to...
ORGANISATION:
Australian Seafood Industries Pty Ltd (ASI)
Industry
PROJECT NUMBER • 2017-203
PROJECT STATUS:
COMPLETED

Risk from Diarrhetic Shellfish Toxins and Dinophysis to the Australian Shellfish Industry

This study first examined DSTs in spiked and naturally contaminated shellfish - Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS ...
ORGANISATION:
University of Technology Sydney (UTS)
Environment
PROJECT NUMBER • 2017-051
PROJECT STATUS:
COMPLETED

Seafood CRC: Extending biotoxin capability and research in Australia through development of an experimental biotoxin contamination facility to target industry relevant issues

A short-term experimental biotoxin contamination facility was set up at Roseworthy, South Australia, to examine the uptake and depuration of marine biotoxins from one of the most toxic dinoflagellates known, Alexandrium catenella. Over the period of one year, SARDI’s Seafood Food Safety group...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
Industry
PROJECT NUMBER • 2016-807
PROJECT STATUS:
COMPLETED

Future oysters CRC-P: Species diversification to provide alternatives for commercial production

Pacific Oyster Mortality Syndrome (POMS), the disease caused by OsHV-1 microvariant, results in high and rapid mortality in Pacific Oysters (Crassostrea gigas) and has been responsible for significant economic loss to oyster industries in Australia and around the world. The diversification of...
ORGANISATION:
SARDI Food Safety and Innovation

Future Oysters CRC-P: Advanced aquatic disease surveillance for known and undefined oyster pathogens

Project number: 2016-806
Project Status:
Completed
Budget expenditure: $829,300.00
Principal Investigator: Marty R. Deveney
Organisation: SARDI Food Safety and Innovation
Project start/end date: 17 Apr 2017 - 29 Jul 2019
Contact:
FRDC

Need

During the February 2016 OsHV-1 outbreak in Tasmania, tracing activities in Tasmania and South Australia required substantial follow-up and surveillance to define diseased areas and prove that response measures had prevented entry of OsHV-1. This surveillance was expensive, and PIRSA and DPIPWE developed a strategy to decrease cost for future surveillance. Cost estimates for ongoing surveillance for early detection have been prohibitive, and both the Australian Pacific oyster aquaculture industries and State governments have expressed a need for more cost effective surveillance options for monitoring disease in affected areas and early detection in currently unaffected regions.

Winter mortality is a major cost impost on the Sydney Rock Oyster industry. Its current status as a syndrome of unknown cause prevents methods from being developed to minimise losses, and an improved understanding of its cause is required to begin to develop management strategies. Mitigating losses will increase profitability for the Sydney rock oyster industry.

SA oyster mortality syndrome (SAMS) is a sporadic, regionally concentrated occurrence of high mortality that is not associated with readily detectable pathogens. The use of the terms SAMS implies that these mortalities have commonalities but this is not proven. This project will aim to provide a focused approach to developing a case definition for SAMS and as a result help direct mitigation strategies to reduce or remove the problem. If a cause can be isolated, an on farm decision tool swill be developed to allow better ‘trigger point’ identification for when farm managers need to engage diagnosticians or instigate identified mitigations strategies.

Objectives

1. Winter mortality: causative agent investigation, case definition, management strategies, improved husbandry and validate WM resistance assessments for Sydney rock oysters
2. SA mortality syndrome: causative agent investigation, improved understanding of causes, case definition, improved diagnostic technologies and improved husbandry to maximise survival
3. POMS: improved surveillance methods for early detection, to manage spread and understand transmission, novel detection and enumeration method based on flow cytometry

Final report

ISBN: 978-1-876007-24-9
Author: Marty R Deveney & Kathryn H Wiltshire (Editors)
Final Report • 2020-03-01 • 12.34 MB
2016-806 DLD.pdf

Summary

This project improved understanding of methods for surveillance for several diseases of farmed oysters. Surveillance is a critical component of biosecurity and aquatic animal health activities.  Surveillance supports understanding health status of populations of animals, provides evidence to support claims of freedom or understanding prevalence and increases the likelihood that a new or emergent disease can be controlled.

Mollusc diseases are less well understood than terrestrial animal and many finfish diseases and this project sought to develop understanding of three oyster diseases of substantial economic impact in the Australilan edible oyster aquaculture industries:

Pacific Oyster mortality syndrome (POMS), South Australian mortality syndrome (SAMS), and winter mortality (WM). 

 
The project included activities with four main aims:
 - Improving understanding of tests for OsHV-1 and investigation of using these tests for area surveillance.
 - Development of a low-cost, rapid test for OsHV-1.
 - Refinement of the case definition and investigation of the cause of SAMS in Pacific Oysters.
 - Development of a case definition and improving understanding of the cause of Winter Mortality in Sydney Rock Oysters. 
Industry
PROJECT NUMBER • 2016-805
PROJECT STATUS:
COMPLETED

Future oysters CRC-P: Polymicrobial involvement in OsHV outbreaks (and other diseases)

The principal goal of this research was to provide a detailed characterisation of the oyster microbiome and identify links between specific features of the microbiome and oyster disease and mortality events. The conceptual framework for this work is based upon: (i) increasing...
ORGANISATION:
University of Technology Sydney (UTS)

Future oysters CRC-P: Advanced understanding of POMS to guide farm management decisions in Tasmania

Project number: 2016-804
Project Status:
Completed
Budget expenditure: $694,773.00
Principal Investigator: Christine D. Crawford
Organisation: University of Tasmania (UTAS)
Project start/end date: 2 Jan 2017 - 29 Jun 2019
Contact:
FRDC

Need

The OsHv-1 virus was first detected in Tasmanian oysters in January 2016 with massive mortality of oysters on farms in several major oyster growing areas, including Pittwater, Pipeclay Lagoon, Blackman Bay and Little Swanport. In other regions such as Bruny Island and Great Swanport the virus was found in oysters but mortalities were low. Reasons for these differences between oyster growing areas are unknown and there is an urgent need for Tasmanian oyster farmers to have region and site specific information on the period of infection of the virus in Tasmania and to better understand the POMS virus dynamics, leading to the development of a predictive framework and early warning for oyster farmers of POMS disease outbreaks. Oyster farmers in Tasmania also desperately need support to develop farm management techniques that enable them to operate successfully in POMS infected areas, especially during the next few years while selective breeding for POMS resistance is being developed.

Objectives

1. To determine i) the periodicity of infection of OsHV-1 virus in Tasmania, ii) advance the understanding of the drivers of POMS disease outbreaks, and iii) develop a predictive framework that allows the Tasmanian oyster industry to forecast danger periods for POMS.
2. To develop farm husbandry and handling protocols to maximise oyster production in POMS infected growing areas by investigating oyster survival in relation to: i) subtidal versus intertidal culture, ii) high water flow areas compared with low flow, iii) reduced handling, iv) size and timing of spat onto growout farms, and v) stocking density.
3. To enhance commercial production of Pacific oysters in a POMS infected area through analysis of past farm production and management records, and a contemporary study of farm production systems and oyster survival.

Final report

ISBN: Print: 978-1-922352-09-5 Electronic: 978-1-922352-10-1
Authors: Christine Crawford Sarah Ugalde
Final Report • 2019-08-01 • 4.07 MB
2016-804-DLD.pdf

Summary

The objectives of our research have been to determine the high-risk periods for POMS infection and to develop a predictive framework so that the farmers can forecast danger periods for POMS. This includes developing a better understanding of where the virus exists in the environment and the factors that drive POMS disease outbreaks. We also aimed to work with the oyster industry to develop farm husbandry and handling protocols that maximise oyster production in POMS infected growing areas. Additionally, we surveyed the oyster farmers affected by POMS to get an overall view of the impact of POMS, especially socio-economic aspects.
 
Our research supports other studies that warm water temperature is a major driver of POMS outbreaks, with temperatures in south-eastern Tasmanian growing areas of 19 °C and above for around one week providing a high risk for a disease event to occur. The risk period for POMS disease outbreaks ranges from mid-November to late March. Other environmental factors likely to be important include water movements and density of infected oysters in a water body. Growing areas with extensive intertidal flats and poor water circulation, such as Pittwater, or with a high biomass of farmed and feral oysters in a relatively small area, such as Pipe Clay Lagoon, have shown to be more susceptible to POMS disease than the other farming areas. As feral oysters in Pipe Clay had a relatively high prevalence of OsHV-1, they may be contributing to the reservoir host of the virus.
 
Studies on farming practices conducted in close collaboration with oyster growers suggest that density of oysters in culture containers has limited effect on mortality rates, and that some
handling is required during the POMS season to reduce biofouling and maintain stocking densities conducive to good growth and survival. Younger and smaller oysters are more susceptible to infection that larger and older juvenile and adult oysters. For oysters of the same age cohort, fast growers had higher mortalities than slow growers.
 
The surveys of oyster growers on the impacts of POMS on their farming operations has shown that mortalities from POMS have rapidly declined from an average of 67% of stock in 2016 to 9% in 2018/19. Changes to farming practices that have occurred during this time include a large increase in stock selectively bred for POMS disease resistance, reduced and more careful handling of oysters during the summer POMS season, selling a higher percentage of stock before the POMS high risk period, and purchasing spat when temperatures are declining.

Future oysters CRC-P: Enhancing Pacific Oyster breeding to optimise national benefits

Project number: 2016-801
Project Status:
Completed
Budget expenditure: $1,972,777.00
Principal Investigator: Matt Cunningham
Organisation: Australian Seafood Industries Pty Ltd (ASI)
Project start/end date: 19 Jan 2017 - 30 Aug 2019
Contact:
FRDC

Need

The introduction of POMS to Tasmania has resulted in an increased requirement for POMS resistant oysters nationally. The Tasmanian industry has an urgent requirement to allow the industry to rebuild towards sustainability for those areas currently affected by the disease and for protection for those areas which are currently free from it. The South Australian industry, whist free from the disease at this point, also requires POMS resistant oysters so that it can hopefully avoid the crippling losses suffered in Tasmania by having resistant oysters stocked onto their farms prior to any potential outbreaks. New South Wales like Tasmania has areas that have been affected and areas that are free from POMS. Biosecurity restrictions as a result of POMS incursions have added an extra layer of complexity to ensuring that the benefits of the selective breeding program are achieved nationally. As a result there is a requirement for further research to adapt the breeding program to the new paradigm of POMS in Tasmania and permit the industry to recover and be protected from the threat of further expansion of POMS into new areas.

Objectives

1. Design and implement a selective breeding strategy for ASI that meets the immediate and medium term (5 year) needs of the national Pacific Oyster industry.
2. Identify Biosecurity constraints to the movement of ASI stock and develop a strategy to permit optimal flow of benefits across the national industry
3. Review, document and communicate protocols and procedures for the use of OsHV-1 exposed broodstock by hatcheries and the transfer of resulting progeny compliant with State regulations.
4. Redefine the protocols for the laboratory family spat challenge model to improve the predictability of field survival, with the goal of a 70% correlation between the laboratory and field tests and to extend the application of the challenge model to include challenges to larvae.
5. Develop a system, supported by general purpose algorithms that will allow ASI to routinely benchmark the estimated breeding values of ASI POMS resistant families against commercial performance of hatchery stock of known pedigree after exposure to OsHV-1 at different life stages.
6. Document and implement strategy to allow use, within the breeding program, of male and female broodstock at 1 year
7. Develop and verify an SNP based genetic test that can discriminate ASI oysters from non-ASI oysters and to identify oysters to family and implement a plan for this test to be commercially available to stakeholders

Final report

ISBN: 978-0-646-81759-0
Authors: Matthew Cunningham Peter Kube Andrew Trotter Xiaoxu Li Peter Kirkland Nick Robinson Greg Smith and Chris Carter
Final Report • 2020-03-01 • 2.27 MB
2016-801-DLD.pdf

Summary

The research was conducted as a direct consequence of the 2016 Pacific Oyster Mortality Syndrome (POMS) outbreak TAS which decimated parts of this State’s Pacific Oyster (Crassostrea gigas) industry and caused numerous flow on effects throughout the entire Australian industry. The project was aimed to allow continuation and improvement of the work that had been undertaken prior to the 2016 outbreak, which was not only a major disruptor to the industry but also the breeding program. New techniques needed to be established to allow continued breeding in TAS in the new POMS paradigm and operations were required to be established in SA due to the biosecurity restrictions brought about by the TAS outbreak. Aspects of the project also looked to increase the rate of genetic gains for POMS resistance by developing additional supporting technologies.
The project was conducted across multiple areas that reflected the objectives of the project. Researchers worked collaboratively to conduct research across breeding strategy development, capacity building in SA, genetic improvement, laboratory and field challenges, accelerated maturation and developing an identification tool.

Future Oysters CRC-P Management and Extension

Project number: 2016-800
Project Status:
Completed
Budget expenditure: $239,820.00
Principal Investigator: Graham C. Mair
Organisation: Australian Seafood Industries Pty Ltd (ASI)
Project start/end date: 1 Jun 2017 - 29 Aug 2019
Contact:
FRDC

Need

Oysters Australia through Australia Seafood Industries as the eligible industry applicant has been successful in obtaining funding for the Future Oysters CRC-P. This CRC-P will expend $5.011 million over the next three years (Oct 2016 until Aug 2019) conducting RD&E to address industry issues with aquatic diseases and production. This application addresses the need to manage the overall CRC-Project including the 7 identified research projects that will be undertaken by the 15 partner organisations that comprise the Future Oysters CRC-P. This project will support the governance needs of the CRC-P to ensure that projects achieve agreed industry outcomes and the available budget is adhered to. Specifically the project is needed to support the activities of the management structures of Future Oysters CRC-P, allow effective industry consultation and reporting, including:
• The Executive Group of Wayne Hutchinson, Graham Mair and Matt Cunningham
• Future Oysters Management Committee - Dr Graham Mair (Chair, ASI Independent Director and Professor at Flinders University), Wayne Hutchinson (Deputy Chair, RD&E Manager Oysters Australia)

The project will provide the coordination function needed to maintain cohesive and strategic collaboration between project partners working in different states and on different oyster species and on different aspects of supporting the industry to adapt to the broadening presence of POMS.

Objectives

1. Establish the Future Oysters CRC-P and its governance structures
2. Manage the Future Oysters CRC-P budget
3. Develop CRC-P Communication, Extension and Education and Training plans
5. Monitoring and evaluating progress of Future Oysters CRC-P research project and approving milestone payments
6. Maintain cohesion and strategies direction of the Future Oysters CRC-P
7. Coordinate and deliver on reporting requirements to DIIS
9. Ensure that Future Oysters CRC-P delivers on its DIIS milestones as per the Funding Agreement

Final report

ISBN: 9781876007263
Author: Steven Clarke and Matt Cunningham
Final Report • 2020-05-01 • 967.02 KB
2016-800-DLD.pdf

Summary

The Future Oysters CRC-P project (CRC-P 2016-553805; Future Oysters) was funded by the Australian Government’s Business Cooperative Research Centres (CRC) Program, which is managed by the Department of Industry, Innovation and Science (DIIS).

The Future Oysters CRC-P project was developed to undertake the research and development (R&D) needed to build and evolve the Australian oyster aquaculture industry, due to the severe impacts of disease on oyster production in Tasmania (TAS), South Australia (SA) and New South Wales (NSW) at the time of its initiation.  The trigger for the project was the sudden spread of the viral disease ostreid herpesvirus-1 microvariant (OsHV-1), more commonly described as Pacific Oyster Mortality Syndrome (POMS), from NSW to TAS in February 2016. 

The project 2016-800: Future Oysters CRC-P Management and Extension was conducted as part of the Future Oysters CRC-P to support the following objectives:

  • Establish the Future Oysters CRC-P and its governance structures.
  • Manage the Future Oysters CRC-P budget.
  • Develop CRC-P Communication, extension and education and training plans.
  • Monitoring and evaluation progress of Future Oysters CRC-P research project and approving milestone payments.
  • Maintain cohesion and strategies direction of the Future Oysters CRC-P.
  • Coordinate and deliver on reporting requirements to DIIS.
  • Ensure that Future Oysters CRC-P delivers on its DIIS milestones as per the Funding Agreement.
Activities completed to address these communications and adoption objectives are reported within the final report for the Future Oysters CRC-P.
Environment
PROJECT NUMBER • 2016-245
PROJECT STATUS:
COMPLETED

Development of sector-specific biosecurity plan templates and guidance documents for the abalone and oyster aquaculture industries

This project developed industry endorsed biosecurity plans and guidance documents for the abalone farming industry (land based), and Oyster hatcheries. These documents provide industry with detailed guidance to develop a new, or improve existing, farm biosecurity plans and supporting...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
Environment
PROJECT NUMBER • 2016-023
PROJECT STATUS:
COMPLETED

Sentinel sensors: revolutionising our understanding and management of the estuarine environment

This study, undertaken by CSIRO Oceans and Atmosphere, examines the usefulness of mussels as sentinels for environmental change using a novel biosensor. This project measured the vital signs of heart rate and behaviour in sentinel animals, as they respond to multiple and interacting changes in the...
ORGANISATION:
CSIRO Oceans and Atmosphere Hobart
Industry
PROJECT NUMBER • 2015-239
PROJECT STATUS:
COMPLETED

Oysters Australia IPA: Pacific Oyster Mortality Syndrome - resistant Oyster breeding for a sustainable Pacific Oyster Industry in Australia

This report describes selective breeding research and extension conducted by Australian Seafood Industries Pty Ltd (ASI) to assist the Pacific Oyster industry’s recovery from an outbreak of Pacific Oyster Mortality Syndrome (POMS) in Tasmania in 2016. The report also describes research to...
ORGANISATION:
Australian Seafood Industries Pty Ltd (ASI)
Industry
PROJECT NUMBER • 2015-238
PROJECT STATUS:
COMPLETED

Rural R and D for Profit: Easy-Open Oyster automation

This project attempted to overcome the consumer barrier to oyster shucking by developing the idea of an Easy Open oyster suggested by Mr Robert Simmonds, owner of Oyster Bob Pty Ltd. This entailed making a slit in the edge of the oyster shell and resealing it with wax so that the oyster remained...
ORGANISATION:
Dr Len Stephens

Oysters Australia IPA: Australian Seafood Industries Pacific Oyster Mortality Syndrome (POMS) investigation into the 2016 disease outbreak in Tasmania - ASI emergency response

Project number: 2015-232
Project Status:
Completed
Budget expenditure: $49,700.00
Principal Investigator: Matt Cunningham
Organisation: Australian Seafood Industries Pty Ltd (ASI)
Project start/end date: 7 Mar 2016 - 29 Jun 2016
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence

Oysters Australia IPA -workshop – identifying knowledge gaps for development of the native oyster aquaculture industry in South Australia

Project number: 2015-229
Project Status:
Completed
Budget expenditure: $19,074.00
Principal Investigator: Xiaoxu Li
Organisation: SARDI Food Safety and Innovation
Project start/end date: 31 Dec 2015 - 29 Jun 2016
Contact:
FRDC

Need

The establishment of a new native oyster aquaculture sector in SA will not only diversify the business risk of the existing Pacific oyster sector, but has the potential to become a multi-million dollar industry itself. As native oyster is an ideal alternative species to mitigate POMS, the successful development of this aquaculture sector will strengthen the confidence of existing/new growers and investors in both Pacific and native oysters; thereby encouraging further expansion of the industry. In addition, supporting species diversification is one of the high strategic priorities in the Oysters Australia Strategic Plan 2014-2019.

Objectives

1. To identify knowledge gaps for development of the native oyster aquaculture industry in Australia
2. To provide advice on the key research and development requirements to support the native oyster aquaculture development in South Australia

Final report

ISBN: 978-1-921563-95-9
Author: Xiaoxu Li and Penny Miller-Ezzy
Final Report • 2017-05-01 • 6.68 MB
2015-229-DLD.pdf

Summary

The 2015-229 “Oysters Australia IPA - workshop - identifying knowledge gaps for development of the native oyster aquaculture industry in South Australia” brought together oyster farmers, hatchery operators and scientists from across Australia to share their knowledge and experience with native oyster (Ostrea angasi) aquaculture and help to identify the key knowledge gaps in the production chain. Through presentations and group discussions, a number of research and development needs were identified. These were categorised into seven key areas: early life history/genetic improvement, farming, oyster health, post-harvest, marketing and branding, industry network and training and education. Across these categories, 19 key research and development needs were identified and prioritised via a post-workshop survey. The following four research and development needs were prioritised as being most important

  • Having a constant and reliable spat supply.
  • Development of a selective breeding program to improve Bonamia resistance, growth rate, meat/shell ratio, colour, lustre, etc.

  • Establishment of good husbandry practices (e.g. handling, density, growing heights, sub-tidal vs. intertidal, seasonal effects, a system to suit O. angasi production).

  • Increase the shelf life/improve packaging/develop processing methods.

 Identifying these needs will help to target future research to meet industry priorities and establish/develop the South Australian/Australian native oyster industry.

 Keywords: Native oysters; Ostrea angasi; Australia; aquaculture

Assessing occurrence of pathogenic species of the marine bacteria Vibrio in Tasmanian oysters from St Helens

Project number: 2015-042
Project Status:
Completed
Budget expenditure: $29,520.38
Principal Investigator: Tom Madigan
Organisation: SARDI Food Safety and Innovation
Project start/end date: 29 Feb 2016 - 29 Jun 2016
Contact:
FRDC

Need

This is the first time that an illness associated with Vibrio has been traced-back to Tasmanian oysters. Regrettably, this incident occurred in the only major harvesting area in Tasmania that has not been impacted by the current Pacific oyster mortality event.

In Australia the control of Vibrio is currently limited to temperature controls during storage or transport. Pre-harvest controls used by the shellfish quality assurance programs are predicated on controlling risk posed by faecal contamination and biotoxins and are not suitable for controlling risk from these naturally occurring bacteria. Although the recent implementation of the Codex Standard for pathogenic marine vibrios suggests risk in bivalve growing areas should be assessed to ascertain the risk to public health, there has been limited research undertaken in Australia. The studies undertaken to date have generally been short in nature with no comprehensive longitudinal studies being undertaken and methodologies have now progressed significantly, whereas New Zealand has been undertaking a long-term survey to understand the risk posed by these pathogens (Cruz, Hedderley & Fletcher 2015). This issue may become a risk in accessing key markets that are active in monitoring or who regulate for these pathogens.

There is an immediate need to collect information on prevalence for the remainder of the summer period to understand the risk and evaluate if there is a relationship to salinity, temperature and toxic strains. This information will be immediately useful for developing appropriate management plans in this growing region.

This illness outbreak will likely result in Tasmanian Shellfish Quality Assurance Program and the other state programs having to consider how to manage risk in the growing areas and establish what is an acceptable level. The work proposed here could be used as a framework for future work that assesses risk across the bivalve industry Australia-wide.

Objectives

1. Assess for the prevalence of pathogenic Vibrio species in the St Helens harvesting region
2. Assess for the presence of genes associated with virulence in Vibrio parahaemolyticus
3. Evaluate if a relationship exisits that between prevalance and sea water temperature and salinity

Final report

ISBN: 978-1-921563-92-8
Authors: Tom Madigan Kate Wilson Gayle Smith and Alison Turnbull

Oysters Australia IPA: the use of FRNA bacteriophages for rapid re-opening of growing areas after sewage spills

Project number: 2015-037
Project Status:
Completed
Budget expenditure: $270,273.00
Principal Investigator: Kate Hodgson
Organisation: SARDI Food Safety and Innovation
Project start/end date: 29 Feb 2016 - 30 Mar 2018
Contact:
FRDC

Need

Oyster growing areas with reticulated sewage and/or waste water treatment plants (WWTP) in the catchment are all potentially affected by closures caused by sewage spills and overflows. Standard risk management practice following such events is to instigate a 21 day closure resulting in lost production, market share, reputational damage, and potential recall costs. The number of growing area closures related to sewage spills and overflows in Australia is significant. In NSW, harvest areas were closed on 100 occasions due to sewage spills between July 2009 and June 2014, resulting in 2688 days of lost sales. The use of FRNA phage as potential indicators of human enteric viruses could lead to a 50% reduction in the number of days closed.
In Tas, there have been 75 harvest area closures of greater than 21 days relating to sewage spills over the past 5 years, resulting in at least 1575 days of lost sales. One three week closure in the Pittwater growing area is estimated to cost approx. $250-$400k combined sales, depending on the season. The cumulative impact of these spills has been estimated to reduce the value of businesses by a combined value of $12 million. Not all sewage incidents result in human enteric viral contamination of shellfish. Factors such as the level of illness in the community, treatment level of waste, size of the spill, hydrodynamics of the growing area, and local growing area conditions all influence the whether a spill results in significant contamination of oysters. FRNA phages have not been used routinely as indicators in shellfish in Australia to date. If FRNA phage levels show contamination is negligible, regulators may allow re-opening of growing areas as early as 10 days after the spill following results from testing on day 7, significantly decreasing the cost of spills to growers. FRNA phages are also showing potential as general indicators of human pathogenic risk.

Objectives

1. Establish baseline levels of FRNA bacteriophages in “at risk” Australian growing areas
2. Determine appropriate sampling plans for FRNA bacteriophages in shellfish following sewage incidents
3. Enable implementation of FRNA phage levels as a management tool for use following adverse sewage incidents in bivalve shellfish growing waters
4. Train laboratories to be competent in using appropriate testing methodologies for FRNA phages in shellfish

Report

ISBN: 978-1-876007-08-9
Authors: Kate Hodgson Valeria Torok Jessica Jolley Navreet Malhi Alison Turnbull
Report • 2018-09-01 • 4.55 MB
2015-037-DLD.pdf

Summary

The South Australian Research and Development Institute (SARDI) Food Safety and Innovation (FSI) group with the support of the Fisheries Research and Development Corporation (FRDC), TasWater, Central Coast Council, Port Macquarie-Hastings Council, Shoalhaven Council, New South Wales Food Authority (NSWFA), New South Wales Shellfish Program, Oysters Australia and Tasmanian Shellfish Quality Assurance Program (TSQAP) undertook an investigation of the use of FRNA bacteriophages (phages) as indicators of viral contamination in shellfish after adverse sewage events. The human enteric viruses Norovirus (NoV) and Hepatitis A virus (HAV) are the most commonly reported foodborne viral pathogens associated with shellfish. The viruses are bioaccumulated by shellfish when sewage enters water in the growing areas. Oysters were sampled from ‘at-risk’ growing areas to establish background baseline phage levels from July 2016 to December 2017. Five adverse sewage events were also investigated during the same period. In addition, training in the laboratory techniques for phage enumeration was undertaken at the SARDI FSI laboratory in Adelaide for staff from laboratories in NSW and Tasmania.
View Filter

Species