88,601 results

Consultation pathways for Australian fishing and seafood industry focused RD&E to deliver improved economic, environmental and social benefits to Australia’s Indigenous people through the Indigenous Reference Group (IRG) and Indigenous RD&E program support

Project number: 2023-159
Project Status:
Current
Budget expenditure: $2,659,555.00
Principal Investigator: Stan Lui
Organisation: Five Cubed Environmental Indigenous Consultants Pty Ltd
Project start/end date: 30 Jun 2024 - 29 Jun 2029
Contact:
FRDC

Need

There remains a continuous need for the strategic planning and execution of targeted and efficient research, development, and extension (RD&E) initiatives that cater to the priorities of the Indigenous fishing and seafood sectors. The Fisheries Research and Development Corporation (FRDC) plays a crucial role in addressing these needs by offering support and resources to the Indigenous Reference Group (IRG) through various projects and a dedicated Indigenous RD&E Program. Since the establishment of the IRG, significant advancements have been made. However, challenges persist due to the limited capacity of most agencies, researchers, and stakeholders to interact with and engage effectively with the Indigenous sector, thus failing to fully leverage the available opportunities and benefits.
The number of Indigenous individuals with the required expertise and interest in participating in this process is on the rise, yet it remains insufficient to meet the identified needs. Addressing this gap is a primary focus for the IRG moving forward, including the advancement of a formal capacity-building program aimed at enhancing the understanding and knowledge of research, management, governance, and agency operations.
Opportunities for improvement include:
1. Increasing the number of Indigenous individuals with the expertise and motivation to engage in RD&E and related policy processes: This involves identifying and promoting educational programs, workshops, and mentorship opportunities that are specifically designed to build the necessary skills and knowledge among Indigenous communities. Such initiatives should be accessible and tailored to the unique cultural and societal contexts of Indigenous people, encouraging their active participation in research, development, and extension activities. As much as possible, opportunities for collaboration with Indigenous organisations and communities in designing these programs can ensure they are relevant and effective.
2. Developing mutual capacity by boosting the understanding and abilities of non-Indigenous stakeholders: This objective focuses on generating a deeper understanding and respect among non-Indigenous stakeholders for Indigenous knowledge systems, values, and practices. Identify sectoral needs for cultural competence training programs and facilitating collaborative projects can bridge the gap between Indigenous and non-Indigenous perspectives. This approach not only enriches the RD&E process but also ensures that research outcomes are more inclusive and beneficial for all parties involved.
3. Enhancing the availability of culturally relevant knowledge and data for the Indigenous fishing sector to meet the needs of Indigenous Australians, researchers, and managers:
To enhance the availability of culturally relevant knowledge and data for the Indigenous fishing sector, the strategy includes collaborating with Indigenous communities to understand traditional fishing practices and ecological insights using participatory research. A digital repository will be created to store and disseminate this information, designed with user-friendly features and access controls to safeguard intellectual property. This platform will support the integration of Indigenous knowledge into sustainable practices and policy decisions, complemented by educational workshops and policy engagement initiatives. Continuous feedback from Indigenous communities and stakeholders will ensure the platform remains relevant and effective, fostering informed decision-making and sustainable use strategies that recognises Indigenous rights and contributions.
4. Moving research forward to yield actionable outcomes and advice for policymakers: This entails aligning research objectives with the practical needs and priorities of the Indigenous fishing community and policymakers. By focusing on applied research that addresses specific challenges and opportunities within the sector, the findings can directly inform and influence policy and management decisions. Effective communication and adoption strategies are essential to translate complex research findings into clear, actionable recommendations for policymakers and industry stakeholders.
5. Strengthening Indigenous led and codesigned projects at the jurisdictional level by improving the connection between the IRG and Regional Advisory Committees/Industry Partnership Agreements (RAC/IPA): Enhancing collaboration and communication between the IRG, RACs, and IPAs can lead to more coordinated and effective Indigenous-inclusive projects outcomes. This could involve systematic meetings, joint planning sessions, and shared platforms for project management and information exchange. By working closely together, these groups can leverage their respective strengths and resources to achieve greater all-round impacts on the ground.
6. Adjusting expectations to clarify that the IRG is not the sole source of support for all Indigenous-related issues within the industry by creating processes to broaden networks and engagement: This involves actively promoting the development of a broader ecosystem of support for Indigenous issues in the fishing and seafood sectors. The IRG can facilitate the creation of partnerships, alliances, and networks that include a diverse range of stakeholders, such as government agencies, academic institutions, non-profit organisations, and industry groups. By diversifying the sources of support and engagement, the reliance on the IRG as the sole conduit can be reduced, leading to a more robust and resilient support system for Indigenous fisheries.
The IRG stands out from other programs by offering services that span several additional areas. One of its goals is to alter the current dependence as the only recognised channel for Indigenous fisheries advice.

Objectives

1. Work with Indigenous peoples and other fisheries resource stakeholders, to facilitate the identification of Indigenous RD&E priorities annually and develop projects to address those priorities.
2. Assist FRDC with management of the Indigenous RD&E program and the portfolio of projects with significant benefit to, or impact on, the Indigenous fishing sector.
3. Develop and implement a fit for purpose communication plan to effectively communicate research results and share knowledge with Indigenous communities, organisations, groups or individuals.
4. Encourage coordination and co-investment in RD&E which benefits the Indigenous fishing community.
5. To provide advice, where appropriate, through the FRDC to researchers regarding how their projects might be improved to consider benefits for Indigenous people, cultural importance, or suggest consultation and communication protocols for working with Indigenous communities.
6. Assist FRDC to explore opportunities for Indigenous engagement, employment, skills transfer, sharing of knowledge and the increase of cultural awareness amongst all parties.
Blank
PROJECT NUMBER • 2009-734
PROJECT STATUS:
COMPLETED

SCRC: SCRC RTG:: Mr David Padula "Export study tour to China"

Travel was undertaken to the cities of Beijing, Guangzhou and Hong Kong in the People's Republic of China in August and September 2009 for a period of 18 days. The visit included attendance at the Dioxin 2009 Symposium on Persistent Halogenated Organic Pollutants in Beijing. Meetings were held with...
ORGANISATION:
SARDI Food Safety and Innovation

Resolution of taxonomic problems and preparation of a user-friendly identification guide to whole fish and fillets for South East Fishery "quota species"

Project number: 1994-152
Project Status:
Completed
Budget expenditure: $236,561.00
Principal Investigator: Peter Last
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 14 May 1995 - 30 Nov 1999
Contact:
FRDC

Objectives

1. To determine the true species composition of SEF "quota species" based on AFMA's requirements and industry's requests for clarification as to which species constitute quota species
2. To prepare a definitive identification guide to the SEF quota species and their close relatives
3. To include within this guide a means of identifying fillets of these species based on their protien fingerprints

Final report

ISBN: 0 643 06161 4
Author: Dr Peter Last
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.
Final Report • 1998-02-27 • 1.39 MB
1994-152-DLD.pdf

Summary

An upgraded identification guide to fish and fillets of the South East Fishery (SEF) quota species groups has been compiled from new information. This reference, South East Fishery.Quota Species: an Identification Guide (Daley et al., 1997) and hereafter referred to as SEF Species Guide, was prepared with the joint resources of the CSIRO Division of Marine Research, the Fisheries Research and Development Corporation (FRDC), the Australian Fisheries Management Authority (AFMA) and the Fishing Industry.
The SEF Species Guide was based on a thorough taxonomic study of the commercial species of the SEF. It provides an improved means to their identification and also clarifies which species are regulated by quota within each quota species group. The species composition of the fishery, consisting of 13 quota species groups, was found to include a suite of commercial species that are currently not covered by quota regulations. Some are new to science and several are very similar in appearance to the quota species.

The SEF Species Guide will be an important tool in the administration of the SEF. Many of the findings of the study have implications for the development of management, including non-trawl sector arrangements. The main findings of the study and their implications for management, are discussed separately for each quota species group in the results section. Results are summarised in Table 1.

In the past, quota regulations have been difficult to enforce because the species identity of the catch was difficult to prove. Genetic examination of seafood can provide strong evidence of species identity. Protein fingerprinting (described more fully in the SEF Species Guide) is a simple method of genetic testing that compares muscle proteins of species. It was used in this project for identifying whole fish and fillets of the SEF quota species. For species with very similar or identical protein fingerprints, additional allozyme tests were developed. The main aim of both types of tests is to assist in distinguishing between quota and non-quota species. More sophisticated genetic techniques (e.g. mitochondrial DNA) may provide more definitive identifications but are more expensive and more time-consuming, and require specialised skills and facilities.

Most SEF quota species have different marketing names to their non-quota commercial relatives. Quota species usually command a higher price than the non-quota species. Use of the correct marketing names is likely to increase consumer confidence, by extension their demand for seafood, thereby contributing to the value of the SEF. Protein fingerprinting may be used to check that seafood is not marketed under the name of a different species. In protein fingerprinting, samples to be identified are compared to a protein standard. Some species can be tested cheaply and easily in the market place; other species require additional testing.

The quota species in six of the SEF quota groups ( dories, grenadiers, prawns, redfishes, roughies and ocean perches), can be distinguished from the non-quota species by protein fingerprinting alone. In five groups (gemfishes, lings, morwongs, trevallies and warehous), protein fingerprinting needs to be supplemented with simple allozyme tests. The confirmatory allozyme tests involve comparing muscle tissues from positively identified control specimens. Testing is difficult in the field but can be done in a laboratory by a technician with limited training.

The remaining two groups (whitings and flatheads) need to be tested in a genetics lab, by an expert, using a combination of protein fingerprinting and multiple allozyme tests. In the event of a legal dispute, field test results (for any of the species) would need to be confirmed in a genetics laboratory. More sophisticated DNA analysis could also be used to provide additional and stronger evidence.

One weakness of similar studies in the past is that no whole fish vouchers were retained. Unless a voucher specimen is retained it is very difficult to prove the identity of a fish from which a tissue sample was taken. Vouchers were retained for all of the species examined during preparation of the SEF Species Guide.

Development of a smoked karasume and a karasumi in sauce

Project number: 1997-416
Project Status:
Completed
Budget expenditure: $38,090.00
Principal Investigator: Jason Hancock
Organisation: Department of Primary Industries (QLD)
Project start/end date: 10 Jan 1999 - 30 Jun 2001
Contact:
FRDC

Objectives

1. To evaluate packaging and develop a process for a smoked karasume product and a karasume in sauce product.
2. To produce a smoked karasume product and a karasume in sauce product suitable for domestic and export market.
3. To determine shelf life of a smoked karasume product and a karasume in sauce product.
4. To launch a smoked karasume product and a karasume in sauce product onto the domestic and export market.
5. Report on sensory and market research findings.

An economic study of the New South Wales oyster growing industry

Project number: 1984-069
Project Status:
Completed
Budget expenditure: $0.00
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 27 Jun 2000 - 30 Jun 2000
Contact:
FRDC

Objectives

1. Determine financial status of oyster growers & their dependence on oysters for their income
2. productivity, market potential & economic trends
direct employment effects
3. level of investment & indebtedness
sensitivity of industry to changes e.g. prices, costs

SCRC: PhD : Protecting the Safety and Quality of Australian Oysters using Predictive Models Integrated with ‘Intelligent’ Cold Chain Technologies

Project number: 2008-700
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Mark Tamplin
Organisation: University of Tasmania (UTAS)
Project start/end date: 31 Jan 2008 - 30 Jan 2011
Contact:
FRDC

Need

Molluscan shellfish are high-valued seafood products that require careful supply chain management to guarantee both product safety and quality. Together, storage time and temperature exert the greatest influence on microbial food safety and quality, and must be controlled during oyster processing, transport and storage. Vibrio species are a natural component of marine and estuarine environments, unlike faecal bacteria which are typically introduced into growing waters by land run-off. Consequently, it is prudent to assume that all live shellfish may potentially contain naturally-occurring Vibrio spp. These risks, including the quality of oysters, can be controlled by proper cold chain management. Improper cold chain handling may increase risk, decrease quality and ultimately affect value and the brand. The negative consequences can easily be spread across the entire industry. Thus, a proactive strategy is required to control and predict risk, with added benefits for maintaining product quality. This can be achieved through validated tools (models) that allow all stakeholders in the cold chain to monitor how conditions influence the safety and quality of oysters. The impact will include 1) improved product safety, 2) an optimised cold chain, 3) higher product quality, 4) greater access to export markets and 5) a more cooperative regulatory environment.

Final report

ISBN: 978-1-925983-24-1
Author: Judith Fernandez-Piquer
Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

View Filter

Species

Organisation