8 results

SCRC: PhD : Protecting the Safety and Quality of Australian Oysters using Predictive Models Integrated with ‘Intelligent’ Cold Chain Technologies

Project number: 2008-700
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Mark Tamplin
Organisation: University of Tasmania (UTAS)
Project start/end date: 31 Jan 2008 - 30 Jan 2011
Contact:
FRDC

Need

Molluscan shellfish are high-valued seafood products that require careful supply chain management to guarantee both product safety and quality. Together, storage time and temperature exert the greatest influence on microbial food safety and quality, and must be controlled during oyster processing, transport and storage. Vibrio species are a natural component of marine and estuarine environments, unlike faecal bacteria which are typically introduced into growing waters by land run-off. Consequently, it is prudent to assume that all live shellfish may potentially contain naturally-occurring Vibrio spp. These risks, including the quality of oysters, can be controlled by proper cold chain management. Improper cold chain handling may increase risk, decrease quality and ultimately affect value and the brand. The negative consequences can easily be spread across the entire industry. Thus, a proactive strategy is required to control and predict risk, with added benefits for maintaining product quality. This can be achieved through validated tools (models) that allow all stakeholders in the cold chain to monitor how conditions influence the safety and quality of oysters. The impact will include 1) improved product safety, 2) an optimised cold chain, 3) higher product quality, 4) greater access to export markets and 5) a more cooperative regulatory environment.

Final report

ISBN: 978-1-925983-24-1
Author: Judith Fernandez-Piquer
Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

Final Report • 2011-01-31 • 3.14 MB
2008-700-DLD-PhD.pdf

Summary

Vibrio parahaemolyticus is a bacterial species indigenous to marine environments and can accumulate in oysters. Some V. parahaemolyticus strains are pathogenic and seafoodborne outbreaks are observed worldwide. This pathogen can reach infectious levels in oysters if post-harvest temperatures are not properly controlled. The aim of this thesis was to support oyster supply chain management by developing predictive microbiological tools to improve the safety and quality of oysters in the market. A predictive model was produced by injecting Pacific oysters (Crassostrea gigas) harvested in Tasmania with a cocktail of pathogenic and non-pathogenic V. parahaemolyticus strains, and measuring population changes over time at static storage temperatures from 4 to 30ºC. In parallel, the total viable bacteria count (TVC) model was measured.

The V. parahaemolyticus and TVC growth models were then evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) harvested in New South Wales containing natural populations of V. parahaemolyticus. The model was developed into a software tool and evaluated in five different simulated oyster supply chains. Due to high uncertainty and variability associated with oyster supply chains a stochastic model which encompassed the operations from oyster farm to the consumer was built using ModelRisk® risk analysis software. The stochastic model may help the oyster industry evaluate the performance of oyster cold chains, and potentially enable real-time decisions if coupled with suitable traceability systems. It can also provide risk managers with valuable information about V. parahaemolyticus exposure levels..

Finally, in order to better understand microbial changes in oysters during distribution and storage, the dynamics of microbial communities in Pacific oysters was determined using 16S rRNA-based terminal restriction length polymorphism and clone library analyses. Significant differences in bacterial community composition were observed and the predominant bacteria were identified for fresh and stored oysters at different temperatures and storage temperature control and spoilage indicator organisms were identified..

SCRC: PhD: understanding quality in abalone

Project number: 2008-701
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Louise R. Adams
Organisation: University of Tasmania (UTAS)
Project start/end date: 31 Mar 2008 - 29 Sep 2011
Contact:
FRDC

Need

Further understanding is required around the definition of abalone quality and how to measure it, compared to products such as salmon and red meats. The development of a rapid and cheap method for detecting taste/texture factors is necessary, and will be investigated in the project. Other future research needs on how the environment and/or diet can influence these quality factors and whether they can be manipulated to alter taste, for example, will benefit the industry in producing a more consistent product. The importance of the factors that affect quality vary according to the specific end-product to be marketed as well as the target market and consumer group, so a better understanding of market needs should be addressed.
A review conducted for the Abalone Council Australia Ltd. (McKinna et al. 2005) found that the key element identified as a barrier for Australia to break through the price ceiling was a lack of rigid quality and product integrity standards. This report highlights a number of product integrity issues for all forms of abalone including inconsistency in product quality, and identified that the abalone industry “needs a uniform grading and product quality scheme”.
This project will examine factors affecting quality of wild-harvest and cultured abalone up to the point of harvest, and also the post-mortem biochemistry and harvesting and processing effects, particularly freezing and thawing.

The project falls within Program 2, “Product Quality and Integrity” of the Seafood CRC. The end-user of the research will be industry members through the respective ACA (CRC Company member) and AAGA (CRC Supporting Participant). As the project will be examining some generic technologies and methods for quality assessment, this may have some positive applications for other projects within Program 2.

SCRC: PhD 5.08 Development of vision and first feeding behaviour of Southern Bluefin Tuna and Yellowtail Kingfish larvae (Dr Jenny Cobcroft: Student Polyanna Hilder)

Project number: 2009-760
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Jennifer Blair
Organisation: University of Tasmania (UTAS)
Project start/end date: 19 Oct 2009 - 20 Jan 2013
Contact:
FRDC

Need

Australian marine finfish farming has a target to increase production to 100,000 t by 2015 (Hone, 2008). In order to achieve this ambitious target considerable growth in the quantity and quality of hatchery produced fry is vital. This project adds critical mass to the highly skilled and specialised area of larval rearing research which will under pin industry growth.

Relevance to industry priorities and Seafood CRC milestones

Developing a sustainable, aquaculture-based supply of SBT juveniles is critical for the growth of the SBT industry in Australia. By increasing our knowledge of SBT and YTK biology, informed modifications to production systems will increase larval survival, addressing four specific outputs of the Finfish - Aquaculture Production Innovation theme including; Strategy 2: 1)Reliable production of SBT juveniles, and 2) Reliable, cost-effective production of high quality juveniles of YTK & other key species, and Strategy 3: 1) Established production techniques for propagated SBT, and 2) Improved feeds and feed management for marine fish during hatchery, nursery and grow-out stages (including during sub-optimal temperatures conditions). The CRC Milestones contributed to are 1.1.2 and 1.1.3 Key researchable constraints (in SBT and YTK larval culture) identified, characterised and successfully addressed.

Blank

SCRC: CoolFish - Traceability and product sensor technologies to manage seafood cool chains APPROVAL FOR PHASE 1 ONLY FOR $14,600

Project number: 2008-790
Project Status:
Completed
Budget expenditure: $0.00
Principal Investigator: Paul Turner
Organisation: University of Tasmania (UTAS)
Project start/end date: 30 Apr 2009 - 29 Jun 2011
Contact:
FRDC

Need

There is a need to integrate both traceability and freshness technologies into a single platform, so that all pertinent information can be collected as the product moves through the supply chain from processing to wholesale/retail, and to remedy unnecessary costly project rejection. Real research developments are occurring in the integration of sensor technology (which has a microbiological focus, and includes developments in food hygiene indexes for predicting the degree of seafood spoilage on the basis of time-temperature data), and traceability technology (which has a spatial focus and includes developments in geographic information systems).

The real questions for seafood producers, processors and sellers are ones of data management – what does an operator do with the data generated by devices such as temperature loggers and global traceability devices? The linkage between this information and protocols, guidelines and standards for seafood export, food safety or authenticity is not yet fully developed or tested.

Final report

ISBN: 978-1-925983-23-4
Author: Mark Tamplin
Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

Final Report • 2009-10-31 • 1.50 MB
2008-790-DLD.pdf

Summary

This report constitutes the completion of Phase 1 of the CoolFish Project. The overall objective of the CoolFish project is to utilise commercial traceability and product sensor technologies to address current business impediments and business opportunities in cool chains to support increased sustainability and profitability in seafood supply chains. Phase 1 provides information to support the decision-making process on progress of the CoolFish Project into Phases 2 and 3.

This project provides a baseline information about logistics issues and challenges in Tasmanian salmon cool chains. Reviews were established and commercially available traceability and sensor technologies with the most potential for deployment in Phases 2 and 3 of the CoolFish project were identified.

View Filter

Research

Product Type

Organisation