11 results
Industry
PROJECT NUMBER • 2019-208
PROJECT STATUS:
COMPLETED

2020-2025 Strategic Plan for the Australian Oyster Industry

The primary purpose of this plan is to coordinate oyster industry research, development, and extension (RD&E) across Australia to ensure that usable outputs are provided to oyster businesses. The plan outlines a set of RD&E programs and a list of priority projects for which research...
ORGANISATION:
Oysters Australia Ltd
Industry
PROJECT NUMBER • 2018-102
PROJECT STATUS:
COMPLETED

Understanding Ostreid herpesvirus type 1 risk: alternative hosts and in situ hybridisation

South Australia (SA) has a large edible oyster industry primarily growing Pacific oysters (Crassostrea gigas). The industry is regionally-based, an important employer and a substantial contributor to regional economies. Pacific oyster mortality syndrome (POMS) is a serious infectious disease of C....
ORGANISATION:
Flinders University
Industry
PROJECT NUMBER • 2018-097
PROJECT STATUS:
COMPLETED

Survey of Enterprise-level Biosecurity across the Australian Aquaculture Industry

The Australian Government Department of Agriculture and Water Resources (the department) commissioned the independent research company Instinct and Reason to conduct a survey aimed at farm owners/managers in the Australian aquaculture industry. The survey aimed to investigate the level of...
ORGANISATION:
Instinct and Reason
Blank
PROJECT NUMBER • 2018-016
PROJECT STATUS:
COMPLETED

Improving data on Aboriginal and Torres Strait Islander marine resource use to inform decision-making

Through two national workshops, Indigenous community and agency representatives and researchers discussed issues around collecting, sharing and ownership of Indigenous fishing data. Challenges and opportunities were shared from all perspectives and expertise, knowledge and information came together...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
Adoption
PROJECT NUMBER • 2017-233
PROJECT STATUS:
COMPLETED

Future Oysters CRC-P Communication and Adoption

The Future Oysters CRC-P project (CRC-P 2016-553805; Future Oysters) was funded by the Australian Government’s Business Cooperative Research Centres (CRC) Program, which is managed by the Department of Industry, Innovation and Science (DIIS). The Future Oysters CRC-P project was developed to...
ORGANISATION:
Australian Seafood Industries Pty Ltd (ASI)
Industry
PROJECT NUMBER • 2016-807
PROJECT STATUS:
COMPLETED

Future oysters CRC-P: Species diversification to provide alternatives for commercial production

Pacific Oyster Mortality Syndrome (POMS), the disease caused by OsHV-1 microvariant, results in high and rapid mortality in Pacific Oysters (Crassostrea gigas) and has been responsible for significant economic loss to oyster industries in Australia and around the world. The diversification of...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
PROJECT NUMBER • 2016-805
PROJECT STATUS:
COMPLETED

Future oysters CRC-P: Polymicrobial involvement in OsHV outbreaks (and other diseases)

The principal goal of this research was to provide a detailed characterisation of the oyster microbiome and identify links between specific features of the microbiome and oyster disease and mortality events. The conceptual framework for this work is based upon: (i) increasing...
ORGANISATION:
University of Technology Sydney (UTS)

Future oysters CRC-P: New Technologies to Improve Sydney Rock Oyster Breeding and Production

Project number: 2016-803
Project Status:
Completed
Budget expenditure: $204,066.69
Principal Investigator: Michael Dove
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 29 Sep 2016 - 30 Aug 2019
Contact:
FRDC

Need

The hatchery sector for SRO is still developing and any assistance with its underlying operating challenges or potential increases to its seed market significantly improve the prospects for its continued development.

Tetraploid SRO: Triploid SRO can grow up to 30% faster than normal SRO and commonly have a significantly longer marketability window. Accordingly, many framers have eagerly awaited the supply of more triploid seed. In order for this to occur new techniques that overcome the shortcomings of direct induction are required - techniques that don't involve the direct application of harmful chemicals to what will eventually be a foodstuff.

Gamete preservation: Currently techniques for strip spawning SRO gametes typically results in the destruction of valuable broodstock and the collection of many more gametes than are required immediately. The capacity to simply and cheaply store gametes for relatively short periods of time offers a number of advantages. Once the hatchery operator is satisfied with the performance of gametes (usually apparent within hours to days) gametes could be shared with other hatcheries. This is particularly valuable where brood stock are scarce because of time of year or they are from a limited population in a breeding program. If problems occur, stored gametes could be used to commence a second batch without the need to continue to hold and feed broodstock, or to recreate a particular cross (or new crosses) within a breeding program.

Maturation: SRO broodstock can take up to 10 weeks to bring into condition within a hatchery and can consume up to 80% of the algae required for a hatchery production run - this is both time consuming and expensive. Technology that accelerates reproductive condition and then stimulates spawning on demand could significantly reduce these costs.

Objectives

1. 20% of industry with access to triploid SRO
2. Reduce complete hatchery operation costs by 15% through a reduction in time for oyster conditioning
3. Increase SRO breeding program reliability

Final report

ISBN: 978-1-76058-361-3
Authors: Michael Dove (NSW DPI) Saowaros Suwansa-ard (USC) Abigail Elizur (USC) Rebecca Seeto (UoN) John Clulow (UoN) Zamira Gibb (UoN) Tomer Abramov (USC) Stephan O’Connor (NSW DPI) Greg Kent (NSW DPI) Wayne O’Connor (NSW DPI)
Final Report • 2020-01-01 • 5.88 MB
2016-803-DLD.pdf

Summary

Hatchery production of Sydney Rock Oysters (SROs, Saccostrea glomerata) is a costly and high risk activity for the breeding program and industry exacerbated by factors such as: reliance on hatchery conditioning, low fertilisation success using strip-spawned gametes, extended larval rearing period compared to Pacific Oysters (Crassostrea gigas), and variable settlement rates. This project, one of a number that comprised the Future Oysters Coopoerative Research Centre project (Future Oysters CRC-P), was developed through discussions with the SRO industry hatchery sector and was designed to target specific hatchery production challenges.

Future Oysters CRC-P: Accelerated Sydney Rock Oyster (SRO) Breeding Research

Project number: 2016-802
Project Status:
Completed
Budget expenditure: $504,661.52
Principal Investigator: Michael Dove
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 30 Aug 2016 - 30 Aug 2019
Contact:
FRDC

Need

Progress in the Sydney rock oyster breeding program is constrained by a number of factors, in particular the number of families that are produced and how they are selected and tested. This program will accelerate SRO breeding progress in three key areas; by producing more families, earlier in each production year and using new methods for family selection.

Objectives

1. By 2019 to have doubled the number of family lines currently planned for the SOCo breeding program
2. To reduce the generation time for QX resistance TO 1 year and to reduce the generation time for winter mortality resistance BY 1 year
3. To have confirmed the value of "stress markers" in selective breeding of Sydney rock oysters

Final report

ISBN: 978-1-76058-356-9
Authors: Michael Dove (NSW DPI) Peter Kube (CSIRO) Curtis Lind (CSIRO) Vivian Cumbo (Macquarie University) David Raftos (Macquarie University) Wayne O’Connor (NSW DPI)
Final Report • 2020-01-01 • 1.30 MB
2016-802-DLD.pdf

Summary

This project focussed on increasing genetic resistance of Select Oyster Company (SOCo) breeding program Sydney rock oyster (Saccostrea glomerata, SRO) families to QX disease and winter mortality (WM) disease. NSW DPI has worked collaboratively with SOCo to develop a SRO family-based breeding program (BP) to replace the mass selection program used to develop fast growth and disease resistance since 1991. Family-based breeding has a number of distinct advantages over mass selection including; increased genetic gains, ability to select for disease resistance under biosecure conditions, improved selection methods for multiple traits, better estimates of genetic gains and trends as well as control over inbreeding. Annual family breeding runs commenced in 2014 to establish the SOCo breeding program. An FRDC project (2015-230) provided genetic expertise to establish and refine breeding methodology for a family-based breeding program.
The next step was greater understanding of the genetic parameters for QX and WM disease and how these related to other traits under selection, growth and meat condition. Genetic progress could be achieved by increasing the numbers of families available for selection, improved understanding of the genetic architecture of traits and reducing the length of breeding cycles for disease resistance. NSW DPI, SOCo, genetic specialists at CSIRO and oyster researchers at Macquarie University developed a multidisciplinary research program to deliver genetic progress for the SOCo breeding program.
View Filter

Species