101 results

Understanding water quality risk for the sustainable and efficient production of Pacific and Sydney Rock Oysters

Project number: 2021-075
Project Status:
Current
Budget expenditure: $85,791.00
Principal Investigator: Shauna Murray
Organisation: University of Technology Sydney (UTS)
Project start/end date: 11 Dec 2021 - 6 Jan 2026
Contact:
FRDC

Need

The Macleay River is a typical oyster farming estuary in that it is impacted by poor water quality from time to time. In particular, the Macleay is an example of the range of water quality issues that can impact oyster farming, as in the past 2 years, it has been effected by: flooding, bushfire runoff, acid sulphate runoff, de-oxygenated water, QX disease, low salinity, and sewage spills. As in all NSW estuaries, it also has fluctuating levels of potentially harmful algal species occasionally.

Little water quality data exists yet for this estuary, despite the fact that it has suffered recent severe ‘black water’ events. This project will represent the first time that very detailed water quality information will be collected and analysed from this estuary, in order to determine predictive models to improve the ability of oyster farmers to respond to poor water quality events.

For this reason, this estuary will serve as a case study for the range of issues that can impact oyster farming in Australia. This site will be used as an example of an approach to managing water quality using high quality data. In addition, the Georges River estuary and the Hawkesbury estuary experience other issues and have active growth of Pacific oysters rather than Sydney Rock oysters. The Hawkesbury has experienced a large scale POMs outbreak which devastated industry. The Georges River has been an experimental site for oyster research by the NSW DPI and Universities for decades, and has an extensive collection of metadata associated with it.

Data from these three estuaries is appropriate and can be useful to oyster growers in Tasmania and South Australia, as we will examine the impact on water quality impacting a Pacific Oyster growing estuary, and because water quality issues such as impact these estuaries are typical examples of the issues impacting this industry nationally. Tasmanian and South Australian oyster farmers will benefit from the information about how a real time sensor network and associated biological data collection can be used to model water quality issues of concern to industry, as well as being used for industry regulatory purposes.

Objectives

1. Collect new biological and physical data from the Macleay estuary using a real time temperature and salinity sensor, oysters and water samples.
2. Conduct modelling and analysis of real time sensor data from estuaries in comparison to biological data, showing the impact of water quality variables, rainfall and disease on oysters in estuaries farming Sydney rock oysters and Pacific oysters.
3. Discuss outcomes with oyster farmers, regulators, government, researchers, councils other industry groups. Discuss outcomes with app developers able to incorporate the models outcomes of the project into their products.
4. Produce a guidance document outlining the way in which real time environmental sensing data is acceptable and applicable for use by shellfish safety regulators.
Industry
PROJECT NUMBER • 2016-806
PROJECT STATUS:
COMPLETED

Future Oysters CRC-P: Advanced aquatic disease surveillance for known and undefined oyster pathogens

This project improved understanding of methods for surveillance for several diseases of farmed oysters. Surveillance is a critical component of biosecurity and aquatic animal health activities. Surveillance supports understanding health status of populations of animals, provides evidence...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
PROJECT NUMBER • 2017-203
PROJECT STATUS:
COMPLETED

Risk from Diarrhetic Shellfish Toxins and Dinophysis to the Australian Shellfish Industry

This study first examined DSTs in spiked and naturally contaminated shellfish - Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Magallana gigas/Crassostrea gigas), Blue Mussels (Mytilus galloprovincialis) and Pipis (Plebidonax deltoides/Donax deltoides), using LC-MS/MS ...
ORGANISATION:
University of Technology Sydney (UTS)
Industry
PROJECT NUMBER • 2008-775
PROJECT STATUS:
COMPLETED

Seafood CRC: A one day workshop to define oyster ‘condition’ and to review the techniques available for its assessment.

The workshop was held under the auspices of the Select Oyster Breeding Company of New South Wales (SOCo) and Australian Seafood Industries (ASI), companies involved with selective breeding programs for Sydney rock and Pacific oysters respectively. Its aim was to clarify and consolidate the views of...
ORGANISATION:
Australian Seafood Industries Pty Ltd (ASI)
Environment
PROJECT NUMBER • 2016-245
PROJECT STATUS:
COMPLETED

Development of sector-specific biosecurity plan templates and guidance documents for the abalone and oyster aquaculture industries

This project developed industry endorsed biosecurity plans and guidance documents for the abalone farming industry (land based), and Oyster hatcheries. These documents provide industry with detailed guidance to develop a new, or improve existing, farm biosecurity plans and supporting...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
Industry
PROJECT NUMBER • 2002-414
PROJECT STATUS:
COMPLETED

Development of techniques for quantification of stress-induced catecholamine changes in the hemolymph of the Pacific oyster (Crassostrea gigas)

As a result of the development of a protocol for oyster blood sample collection, preservation and transportation and subsequent catecholamine analysis during the course of this project, a test now exists which can be used to measure stress in oysters. This test will be used in the...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
View Filter

Species