31
results
Blank
PROJECT NUMBER • 2019-013
PROJECT STATUS:
COMPLETED

Modelling environmental changes and effects on wild-caught species in Queensland

This project studied environmental factors which may be influencing the recruitment, catchability or productivity of Snapper, Pearl Perch, and Spanner Crab stocks in Queensland. Two environmental variables: GSLA and Chl-a were found to have strong associations with either abundance or catchability...
ORGANISATION:
University of Queensland (UQ)
Environment
PROJECT NUMBER • 2017-094
PROJECT STATUS:
COMPLETED

NCCP: Review of Carp control via commercial exploitation

The present study, undertaken by Charles Sturt University, was developed to investigate the potential for commercial, or subsidised, fishery exploitation to effectively control carp populations in Australia. Using published literature examples of fish (and other) vertebrate pest-removal...
ORGANISATION:
La Trobe University Mildura Campus
Environment
Environment
PROJECT NUMBER • 2018-119
PROJECT STATUS:
COMPLETED

Development of a hydrodynamic model to investigate near field and regional connectivity around Okehampton Bay

The study aims to satisfy the regulatory requirements of Environmental Licence 10172/2 from the Tasmanian EPA around Tassal’s use of Okehampton Bay for salmonoid aquaculture, particularly the possible fate of material released within Okehampton Bay into the receiving environment. To...
ORGANISATION:
Tassal Group
Environment
PROJECT NUMBER • 2017-135
PROJECT STATUS:
COMPLETED

NCCP: essential studies on cyprinid herpesvirus 3 (CyHV-3) prior to release of the virus in Australian waters

This project, undertaken by CSIRO, aimed to determine the most important form of transmission of CyHV-3 to Cyprinus carpio (common carp). This was addressed through experiments to determine: (1) The relative amounts of virus in the skin and mucus of infected fish vs shed...
ORGANISATION:
CSIRO Australian Animal Health Laboratory
Industry
PROJECT NUMBER • 2018-090
PROJECT STATUS:
COMPLETED

Improving early detection surveillance and emergency disease response to Pacific Oyster Mortality Syndrome (POMS) using a hydrodynamic model for dispersion of OsHV-1

Rapid predictive capability of viral spread through water during an aquatic disease outbreak is an epidemiologist’s dream, and up until now has not been achievable. A biophysical particle tracking model for Ostreid herpesvirus 1 microvariant (OsHV-1) that causes POMS was developed to determine...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
View Filter

Product Type