50
results
Industry
PROJECT NUMBER • 2019-214
PROJECT STATUS:
COMPLETED

Survey for WSSV vectors in the Moreton Bay White Spot Biosecurity Area

The objective of this project was to undertake opportunistic plankton sampling and collect small non-commercial species of decapod crustaceans in northern Moreton Bay and near the intakes of the three prawn farms which remained operating on the Logan River during April and May 2020, at a time when...
ORGANISATION:
DigsFish Services Pty Ltd
Industry
PROJECT NUMBER • 2019-089
PROJECT STATUS:
COMPLETED

Evaluation of point of care (POC) tests for White Spot Syndrome Virus (WSSV)

The CSIRO Australian Centre for Disease Preparedness (ACDP) Fish Diseases Laboratory (AFDL), in collaboration with Biosecurity Queensland, conducted a laboratory-based evaluation of commercially available point-of-care (POC) tests designed to detect white spot syndrome virus (WSSV) in the field. The...
ORGANISATION:
CSIRO Australian Animal Health Laboratory
Industry
PROJECT NUMBER • 2018-086
PROJECT STATUS:
COMPLETED

Assessment of the capability of Shrimp MultiPath White Spot virus tests: A multiplexed screening platform for pathogen diagnostics in prawns

This report summarises the development and performance assessment of novel PCR based assays to monitor and detect the microsporidian Enterocytozoon hepatopenaei (EHP) in Penaeid shrimp samples using a cost-effective and high-throughput approach. The original Project objective was to...
ORGANISATION:
Genics Pty Ltd
Industry
PROJECT NUMBER • 2017-238
PROJECT STATUS:
COMPLETED

Water treatment to control influent water biosecurity risk on Australian prawn farms. Effectiveness and impacts on production ponds.

This project assessed the performance of mechanical filtration as a means by which Australian prawn farmers could lower the risk of disease agent transfer into farms by selective removal of disease hosts and other vectors naturally present in farm source water. The project sought to provide...
ORGANISATION:
Department of Agriculture and Fisheries EcoScience Precinct
Industry
PROJECT NUMBER • 2018-090
PROJECT STATUS:
COMPLETED

Improving early detection surveillance and emergency disease response to Pacific Oyster Mortality Syndrome (POMS) using a hydrodynamic model for dispersion of OsHV-1

Rapid predictive capability of viral spread through water during an aquatic disease outbreak is an epidemiologist’s dream, and up until now has not been achievable. A biophysical particle tracking model for Ostreid herpesvirus 1 microvariant (OsHV-1) that causes POMS was developed to determine...
ORGANISATION:
Department of Primary Industries and Regions South Australia (PIRSA)
Industry
PROJECT NUMBER • 2017-103
PROJECT STATUS:
COMPLETED

The evaluation of two species, Cobia and Giant Grouper, as alternative species to farm in the WSSV affected areas of South East Queensland.

In 2016/17, the Rocky Point Prawn Farm, along with other farms in the Logan River region of south-east Queensland, was severely affected by a white spot disease outbreak caused by the exotic white spot syndrome virus (WSSV). Measures enforced to eradicate WSSV resulted in a complete loss of stock...
ORGANISATION:
Rocky Point Aquaculture Company Pty Ltd
SPECIES
Industry
PROJECT NUMBER • 2018-157
PROJECT STATUS:
CURRENT

Evaluation of Cobia and Giant Groper production and health in multiple growout systems, as an alternative species to farm in WSSV affected areas of South East Queensland

The report details the production performance and health performance of Cobia (Rachycentron canadum) and Giant Groper (Epinephelus lanceolatus) reared in tanks, ponds and cages within a farm in the previously white spot syndrome virus affected region of the Logan River, Queensland. Findings of this...
ORGANISATION:
Rocky Point Aquaculture Company Pty Ltd
SPECIES
Industry
PROJECT NUMBER • 2016-805
PROJECT STATUS:
COMPLETED

Future oysters CRC-P: Polymicrobial involvement in OsHV outbreaks (and other diseases)

The principal goal of this research was to provide a detailed characterisation of the oyster microbiome and identify links between specific features of the microbiome and oyster disease and mortality events. The conceptual framework for this work is based upon: (i) increasing...
ORGANISATION:
University of Technology Sydney (UTS)
View Filter

Product Type