Improving the cost effectiveness of displaced fishing effort adjustment programmes using ex post socio-economic impact analysis

Project number: 2010-038
Project Status:
Completed
Budget expenditure: $93,575.84
Principal Investigator: Sevaly Sen
Organisation: Fisheries Economics Research and Management Specialists (FERM)
Project start/end date: 19 Jun 2010 - 29 Jun 2011
Contact:
FRDC

Need

As with the Great Barrier Reef Marine Protected Area and the South-east Marine Bio-regional plan, future social and economic impact assessments of Commonwealth and State declared MPAs/marine reserves are likely to contribute to the estimated quantum and distribution of adjustment assistance for displaced fishing effort.

However, previous experiences of adjustment assistance for displaced effort have never been evaluated as to whether these schemes alleviated the impacts on communities and fishers most affected or whether the assistance provided was used by recipients for what it was intended.

Evaluating these impacts will better inform and shape the intensive marine bioregional planning process over the next two years.

An optimised displaced effort adjustment program should result in:

1. potentially reduced expenditure due to better-targetted assistance
2. faster planning processes for future MPAs.
3. reduced administrative burdens due to lower levels of complaints and challenge.

Objectives

1. To assess the social and economic impact of the GBR Structural Adjustment Package on displaced effort
2. To identify improvements in current approaches to financial assistance for future displaced effort assistance programmes
3. To provide information which can be used to refine future social and economic ex ante assessments for MPAs

Final report

ISBN: 978-0-9872184-0-7
Author: Sevaly Sen

Quantitatively defining proxies for biological and economic reference points in data poor and data limited fisheries

Project number: 2010-044
Project Status:
Completed
Budget expenditure: $320,429.00
Principal Investigator: Shijie Zhou
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 30 Jun 2010 - 29 Jun 2012
Contact:
FRDC

Need

The Commonwealth harvest strategy policy requires the estimation of specific reference points for each stock to which the policy applies. Unfortunately, it is impossible to estimate directly such reference points for many stocks due to limited, or absence of, economic data as well as biological data. In most cases, this is due to the relatively small size of the fishery or the relatively low economic importance of the species concerned, making the routine collection of appropriate data too costly. The current TIER system of assessment only attends to those fisheries that can either have a detailed quantitative assessment (TIER 1), have limited biological data but some ageing data (TIER 3), or have meaningful catch and catch rate statistics (TIER 4). The methods and proxies already in place provide a means of designating a target and limit in terms of catch rates and catches. However, these reference points are only useful for those species for which catch rate data are a meaningful reflection of stock status. There are many species for which catch rates, even if available are very poor performance measures. Alternative methods and proxies need to be developed for even lower TIERs that provide for a consistent and defensible approach across all data poor fisheries. In most of these fisheries, economic data will also be absent, so some consistent means of developing meaningful and defensible target reference points needs to be developed.

Recognizing these needs, ComFRAB called for two related proposals: “Incorporating economics into harvest strategies without bioeconomic models” and “Quantitatively defining proxies for limit and target reference points in data poor fisheries”. Because these two proposals are closely linked and overlap in many ways, we opted to combine them into one single proposal. This will facilitate the team to work closely and reduce the overall project cost.

Objectives

1. Build on current work for species in data poor fisheries under harvest strategies that: (1) identify biological reference points with associated performance measures and proxies, and (2) test harvest strategies and quantitatively defines limit and / or target reference points in line with the settings of the Commonwealth Harvest Strategy Policy.
2. To identify cost-effective methods of incorporating economic indicators into biological reference points that could be determined in Objective 1.
3. To develop case studies that demonstrate how these methods could be implemented in other Australian fisheries.

Final report

ISBN: 978-0-643-10999-5
Author: Shijie Zhou

Evaluating the use of onboard cameras in the Shark Gillnet Fishery in South Australia

Project number: 2010-049
Project Status:
Completed
Budget expenditure: $288,462.00
Principal Investigator: Josh Davis
Organisation: Australian Fisheries Management Authority (AFMA)
Project start/end date: 23 Sep 2010 - 31 Oct 2011
Contact:
FRDC

Need

Australian Sea Lions (ASL) have been known to interact with the gillnet sector of the Southern and Eastern Scalefish and Shark Fishery (SESSF) for some time but the nature and extent of these interactions have been poorly understood. On 30 June 2010 AFMA implemented the Australian Sea Lion Management Strategy. A component of this strategy requires that observer coverage in the fishery be increased from approx 2.6% to at least 11% in the South Australian gillnet sector of the SESSF. This increased level of monitoring is designed to detect interactions with Australian sea lions and provide an indication of accuracy of predicted level of interactions suggested in the report by Goldsworthy et al (2010). Given the rare nature of the interactions, significant increases in human observation at or above this level are unlikely to be economically sustainable in the longer term and digital monitoring including cameras have been proposed as a viable alternative. Onboard camera monitoring has the potential to improve fishery management outcomes cost effectively.
AFMA is currently undertaking e-monitoring trial featuring onboard cameras in the Eastern Tuna and Billfish Fishery and the Northern Prawn Fishery to assess the capacity of onboard cameras to collect data cost effectively. Early indications from these trials are positive. This project differs from the ETBF as it focuses on an investigation of the equipment to collect a significant proportion of the data currently collected as part of the Independent Scientific Monitoring Program (ISMP) including protected species. In addition the capacity of onboard cameras to capture interactions between fishing operations and Australian sea lions in the Shark gillnet fishery is unknown. The proposed project will be designed to enable a detailed cost benefit analysis of onboard camera monitoring in gillnet and fish trawl fisheries to test this hypothesis.

Objectives

1. Assess the capacity of electronic monitoring to provide in-season data on interactions with Australian sea lions in shark gillnet fisheries.
2. Improve the level of certainty on the impact of fishing operations Australian sea lions that currently surrounds the Goldsworthy findings.
3. Investigate the use of electronic monitoring for the further collection of data currently collected by observers with a focus on opportunities to improve data integrity and data quality in the ISMP data set.
4. Assess the cost and benefits of utilising electronic monitoring in the shark gillnet fisheries

Final report

ISBN: 978-1-877044-43-4
Author: Josh Davis

Tactical Research Fund: Using innovative techniques to analyse trends in abundance for non-target species

Project number: 2010-057
Project Status:
Completed
Budget expenditure: $68,235.00
Principal Investigator: Malcolm Haddon
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 30 Nov 2010 - 30 Jul 2011
Contact:
FRDC

Need

EBFM requires performance indicators for a wide range of species that interact with fisheries, and systems to monitor those performance indicators. However, there is no routine monitoring of the status of the many commercially important byproduct and bycatch species. The assessment of these non-target species remains important in terms of the Commonwealth Harvest Strategy Policy and AFMA have expressed a need for a solution to how to assess the relative status of these species. Such monitoring is required for strategic assessment under the EPBC Act (1997).

Most of non-target species are not under quota and while not directly targeted they can still experience significant fishing mortality and add value to the landed catch. Currently, if they are assessed at all, the assessments merely apply the same strategies as adopted for target species. There is often a perception that CPUE should be disregarded “because the species was not targeted”. There is a need to determine whether alternative methods should be applied to such species that take into account the fact that their catch is incidental to the main activities of the fishers and hence the fishery dependent data for the non-target species will have different qualities. By definition these fisheries are multi-species in nature and this too can complicate their assessment. Technically this is not a trivial problem and more clarity is needed concerning the scope of the issue and how to deal with it. Rather than launch immediately into a relatively long term attempt at finding a solution, a more efficient approach is proposed that involves expert examination and rapid review to map the road ahead. Hence there is a need to conduct workshops aimed at clarifying the management requirements and the most cost effective approach to solving these management issues, which apply to all multi-species data poor fisheries.

Objectives

1. Test analysis methods against available datasets capable of providing trend in abundance estimates for byproduct and bycatch species
2. Conduct two workshops, aimed at identifying the management issues and the techniques available for analyzing trends in abundance in non-target species.

Final report

ISBN: 978-0-643-10812-7
Author: Malcolm Haddon

Australian Fisheries Statistics (2009 – 2013)

Project number: 2010-208
Project Status:
Completed
Budget expenditure: $536,668.00
Principal Investigator: Robert Curtotti
Organisation: Department of Agriculture, Fisheries and Forestry (DAFF) ABARES
Project start/end date: 27 May 2010 - 29 Jun 2014
Contact:
FRDC

Need

Statistics on Australian fisheries production, gross value of production (GVP) and trade is required to meet a wide range of demands.

First: To assist in making investment decisions and planning of marketing strategies.

Second: To provide the basis for setting of research priorities by fisheries managers, industry and research organisations and the selection of a research portfolio by funding agencies. The Department of Agriculture, Fisheries and Forestry through ABARE, contributes to a number of international databases including databases managed by the FAO and OECD. Information at the international level can be important in relation to international negotiations on issues such as transboundary fisheries, in analysing trade opportunities and threats and is essential for participating in fora such as APEC and WTO.

Third: The gross value of production for specific fisheries are used for determining research and development levies for the FRDC and for determining industry contributions to research. Because the estimates form the basis for research levies for each fishery, it is important for the system to be independent from those involved in the management and marketing processes to ensure neutrality and integrity of the estimates.

As identified at the meeting in late October 2009, between ABARE and industry stake holders, there is also a need for other economic data that is not currently incorporated in the AFS. In particular there is a need to ensure that the method used to estimate GVP in each jurisdiction is robust and consistently applied. To meet this need, this project incorporates an audit component, to commence in 2010-11, to assess the extent to which the method used to calculate GVP is robust and consistent across jurisdictions, and to determine the fishery related data sets that currently exist across jurusdictions.

Objectives

1. To maintain and improve the database of production, GVP and trade statistics for the Australian fishing industry, including aquaculture.
2. To present these data in an accessible form.
3. To assess the robustness and consistency of the methodology used to estimate GVP across jurisdictions, assessment of additional data/information for inclusion in the AFS and to identify other streams of research.
4. To improve the current information about employment across the fishing industry through a survey of stakeholders.

Related research

Industry
PROJECT NUMBER • 2024-047
PROJECT STATUS:
CURRENT

Prawn pre-market shell hardness assurance using non-destructive hyperspectral imaging and artificial intelligence - Calibration Phase

1. The Calibration Phase of this project focuses on developing and validating ML models capable of analysing HSI data to classify prawn shell hardness levels. These models will lay the groundwork for implementing systems in the next phase, ensuring consistent, high-quality products for the market.
ORGANISATION:
Department of Primary Industries (QLD)
Industry
Industry

Seafood CRC: oyster over-catch: cold shock treatment

Project number: 2010-734
Project Status:
Completed
Budget expenditure: $71,000.00
Principal Investigator: Bob Cox
Organisation: Tasmanian Oyster Research Council Ltd
Project start/end date: 31 Aug 2010 - 29 Dec 2010
Contact:
FRDC

Need

"Over-catch" (fouling) and pest species (oysters, barnacles, sea squirts, flatworms, mudworm) cost the Australian oyster industry an inestimable sum each year in grading and handling labour, product loss and reduced price due to unmarketable product. The pests are regionally specific, the issue is common across all growing areas and in all cases is a major financial burden. In NSW overcatch is currently treated through labour expensive heat treatment and stock management. The cost effectiveness of the alternate proposed treatment froms part of this proposal.

For example, oyster overcatch is one of the primary deterrents to interstate investment into Port Stephens, NSW which previously was a highly productive single species estuary. It is estimated that NSW production would be increased by 12.5% (GVP of almost $5m) through Marine Culture's use of a successful overcatch treatment in Port Stephens alone. Marine Culture propose to farm an output of 750,000 dozen Pacific Oysters off the area.

This project expands investigative research by NSW I&I (Heasman 2005) in which experimental, small scale cold shock trails “resulted in the death of advanced rock oyster over-catch in as little 5 seconds and complete mortality after exposure periods of 60 seconds and above. By contrast, no deaths nor discernable negative effects on the health and flesh condition of host Pacific oysters were detected for cold shock durations of up to 2 minutes”.

The project will include a more comprehensive range of oysters sizes and types, and fouling organisms. Further, and critically, the method needs to be assessed on a large scale under commercial operating environments to demonstrate practicality and cost effectiveness.

Objectives

1. Increased Australian oyster production and value
2. Enhanced oyster farming efficiencies and cost effectiveness
3. Make available relevant cold tolerance parameters for oyster, key fouling and pest species to the industry for uptake

Final report

Authors: Bob Cox Peter Kosmeyer Wayne O’Connor Michael Dove Kyle Johnstone
Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.