74,283 results
Environment
PROJECT NUMBER • 2014-011
PROJECT STATUS:
COMPLETED

Direct age determination with validation for commercially important Australian lobster and crab species (western, eastern, southern and ornate rock lobsters, and crystal, Tasmanian giant and mud crabs)

This research project was undertaken by a national collaboration of government and academic scientists representing key Australian crustacean fisheries. The collaborating institutions were the: Marine Ecology Research Centre – Southern Cross University, Department of Fisheries Western...
ORGANISATION:
Southern Cross University (SCU) Lismore Campus
Industry
PROJECT NUMBER • 2014-010
PROJECT STATUS:
COMPLETED

Understanding recruitment collapse of juvenile abalone in the Eastern Zone Abalone fishery – development of pre-recruitment monitoring, simulation of recruitment variation and predicting the impact of climate variation

Over the past three decades the Tasmanian Eastern Zone Abalone Fishery has experienced several fluctuations in catch and catch rates of Blacklip Abalone as well as environmental perturbations, which may be affecting productivity. The capacity to measure inter-annual variation in Blacklip Abalone...
ORGANISATION:
University of Tasmania (UTAS)
Environment
Communities
PROJECT NUMBER • 2014-005
PROJECT STATUS:
COMPLETED

RAC WA: The application, needs, costs and benefits of Habitat Enhancement Structures in Western Australia and cost effective monitoring methods

Habitat Enhancement Structures (HES) developments are increasing in Australia and worldwide providing many benefits to the environment and different user groups. With this rapid growth there are still large knowledge gaps evident in relation to HES. This project investigated the application, needs,...
ORGANISATION:
Recfishwest
Environment
PROJECT NUMBER • 2014-004
PROJECT STATUS:
COMPLETED

Mitigation measures to reduce entanglements of migrating whales with commercial fishing gear

This project provided a robust assessment that gear modifications introduced into the WCRLMF and octopus fisheries have reduced the number of reported entanglements. The management arrangements around the implementation of these modifications are appropriate in light on the new spatial and temporal...
ORGANISATION:
Department of Primary Industries and Regional Development (DPIRD) WA

Aquatic Animal Health Subprogram: Development of stable positive control material and development of internal controls for molecular tests for detection of important endemic and exotic pathogens

Project number: 2014-002
Project Status:
Completed
Budget expenditure: $172,185.00
Principal Investigator: Nicholas J. Moody
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 30 Jun 2014 - 29 Jun 2016
Contact:
FRDC

Need

Quality assured positive control material is critical to demonstrate an assay has performed as expected. Similarly, testing for internal control material ensures extraction procedures produced template of acceptable quality, free of test inhibitors. Both types of controls are particularly important where the samples are being tested to demonstrate freedom from disease (i.e. are negative).

One internal control target is the 18S ribosomal RNA gene. However, assays targeting 18S need to be optimised if multiplexed, 18S is ubiquitous (negative control reactions can test positive) and 18S is not applicable for crustacean samples. Other targets include genes of the host organism, which are often limited to a single species, and are an option that will be investigated for priority species. Plant viruses enable development of one internal control assay for RNA and one for DNA. Optimisation of each assay would still be required if multiplexed, one internal control and one set of primers/probe for any assay reduces costs, eliminates 18S contamination issues and is applicable for all hosts (i.e. finfish, mollusc, crustacean).

Synthetic RNA and plasmid DNA positive controls enable accurate quantification of targets, control over the level of positive template (i.e. added at levels approaching the limits of detection of the assay), are consistent and greatly aid troubleshooting when contamination occurs. They also eliminate the need to source infected animals for positive control material. AFDL implements OIE, EU and/or ANZSDPs for diagnostic assays, reducing the risk of test changes requiring redevelopment of positive controls, which are limitations of synthetic and plasmid controls.

Objectives

1. Produce quantified synthetic RNA positive control material for conventional and real-time RT-PCR assays, available on request.
2. Produce quantified plasmid DNA positive control material for conventional and real-time PCR assays, available on request.
3. Optimised universal internal control based on plant viral RNA and DNA and/or species-specific genes for use in molecular assays developed and implemented
4. Technology transferred and adopted by participating laboratories.

Final report

ISBN: 978-1-925994-19-3
Authors: Moody NJG Cummins DM Mohr PM Williams LM Hoad J Valdeter S Klein R Slater J and Crane MStJ
Final Report • 1.94 MB
2014-002-DLD.pdf

Summary

This project has resulted in the production of a bank of quality-assured, non-infectious, quantifiable, molecular test controls that can be provided to any diagnostic laboratory in a ready-to-use form to assist them with the implementation of specific aquatic animal disease diagnostic tests. In addition, these controls will be useful in the diagnostic laboratory quality systems to demonstrate laboratory competency.

Thirty-two positive control plasmids (22 for real-time assays and 10 for conventional assays) have been prepared and are in routine use. A further 10 plasmid positive controls (8 for real-time assays and 2 for conventional assays) are undergoing final quality checks prior to release for routine use. Therefore, a total of 42 plasmid positive controls for 25 different pathogens have been generated as a result of this project.

Their most important use is as positive controls during diagnostic testing. Because these controls are distinguishable from the pathogens’ genomic nucleic acid, they will assist in identification of cross-contamination between the positive control samples and the diagnostic samples and thus will mitigate against the reporting of false-positive results that occur due to contamination of test samples with positive controls.

In addition, T4 and QBeta phages have been evaluated as heterologous internal positive controls for DNA and RNA targets, respectively, for use in establishing that generic aspects of PCR testing (e.g. nucleic acid extraction and absence of PCR inhibitors) are performing as expected. Implementation of the use of the T4 and QBeta phages as internal positive controls has improved the quality of molecular testing, through more sensitive assessment of the effect of PCR inhibitors and confidence in results generated when testing atypical samples (i.e. plankton, dirt, feed).

The use of these controls in diagnostic testing will assist diagnostic laboratories to monitor the performance of current methods and assist with technology transfer of new methods. This will, in turn, provide laboratories, industry, regulators (managers and policy makers), the general public and trade partners with enhanced confidence in Australia’s diagnostic capability for important exotic and endemic aquatic pathogens.
Final Report • 1.94 MB
2014-002-DLD.pdf

Summary

This project has resulted in the production of a bank of quality-assured, non-infectious, quantifiable, molecular test controls that can be provided to any diagnostic laboratory in a ready-to-use form to assist them with the implementation of specific aquatic animal disease diagnostic tests. In addition, these controls will be useful in the diagnostic laboratory quality systems to demonstrate laboratory competency.

Thirty-two positive control plasmids (22 for real-time assays and 10 for conventional assays) have been prepared and are in routine use. A further 10 plasmid positive controls (8 for real-time assays and 2 for conventional assays) are undergoing final quality checks prior to release for routine use. Therefore, a total of 42 plasmid positive controls for 25 different pathogens have been generated as a result of this project.

Their most important use is as positive controls during diagnostic testing. Because these controls are distinguishable from the pathogens’ genomic nucleic acid, they will assist in identification of cross-contamination between the positive control samples and the diagnostic samples and thus will mitigate against the reporting of false-positive results that occur due to contamination of test samples with positive controls.

In addition, T4 and QBeta phages have been evaluated as heterologous internal positive controls for DNA and RNA targets, respectively, for use in establishing that generic aspects of PCR testing (e.g. nucleic acid extraction and absence of PCR inhibitors) are performing as expected. Implementation of the use of the T4 and QBeta phages as internal positive controls has improved the quality of molecular testing, through more sensitive assessment of the effect of PCR inhibitors and confidence in results generated when testing atypical samples (i.e. plankton, dirt, feed).

The use of these controls in diagnostic testing will assist diagnostic laboratories to monitor the performance of current methods and assist with technology transfer of new methods. This will, in turn, provide laboratories, industry, regulators (managers and policy makers), the general public and trade partners with enhanced confidence in Australia’s diagnostic capability for important exotic and endemic aquatic pathogens.
Final Report • 1.94 MB
2014-002-DLD.pdf

Summary

This project has resulted in the production of a bank of quality-assured, non-infectious, quantifiable, molecular test controls that can be provided to any diagnostic laboratory in a ready-to-use form to assist them with the implementation of specific aquatic animal disease diagnostic tests. In addition, these controls will be useful in the diagnostic laboratory quality systems to demonstrate laboratory competency.

Thirty-two positive control plasmids (22 for real-time assays and 10 for conventional assays) have been prepared and are in routine use. A further 10 plasmid positive controls (8 for real-time assays and 2 for conventional assays) are undergoing final quality checks prior to release for routine use. Therefore, a total of 42 plasmid positive controls for 25 different pathogens have been generated as a result of this project.

Their most important use is as positive controls during diagnostic testing. Because these controls are distinguishable from the pathogens’ genomic nucleic acid, they will assist in identification of cross-contamination between the positive control samples and the diagnostic samples and thus will mitigate against the reporting of false-positive results that occur due to contamination of test samples with positive controls.

In addition, T4 and QBeta phages have been evaluated as heterologous internal positive controls for DNA and RNA targets, respectively, for use in establishing that generic aspects of PCR testing (e.g. nucleic acid extraction and absence of PCR inhibitors) are performing as expected. Implementation of the use of the T4 and QBeta phages as internal positive controls has improved the quality of molecular testing, through more sensitive assessment of the effect of PCR inhibitors and confidence in results generated when testing atypical samples (i.e. plankton, dirt, feed).

The use of these controls in diagnostic testing will assist diagnostic laboratories to monitor the performance of current methods and assist with technology transfer of new methods. This will, in turn, provide laboratories, industry, regulators (managers and policy makers), the general public and trade partners with enhanced confidence in Australia’s diagnostic capability for important exotic and endemic aquatic pathogens.
Final Report • 1.94 MB
2014-002-DLD.pdf

Summary

This project has resulted in the production of a bank of quality-assured, non-infectious, quantifiable, molecular test controls that can be provided to any diagnostic laboratory in a ready-to-use form to assist them with the implementation of specific aquatic animal disease diagnostic tests. In addition, these controls will be useful in the diagnostic laboratory quality systems to demonstrate laboratory competency.

Thirty-two positive control plasmids (22 for real-time assays and 10 for conventional assays) have been prepared and are in routine use. A further 10 plasmid positive controls (8 for real-time assays and 2 for conventional assays) are undergoing final quality checks prior to release for routine use. Therefore, a total of 42 plasmid positive controls for 25 different pathogens have been generated as a result of this project.

Their most important use is as positive controls during diagnostic testing. Because these controls are distinguishable from the pathogens’ genomic nucleic acid, they will assist in identification of cross-contamination between the positive control samples and the diagnostic samples and thus will mitigate against the reporting of false-positive results that occur due to contamination of test samples with positive controls.

In addition, T4 and QBeta phages have been evaluated as heterologous internal positive controls for DNA and RNA targets, respectively, for use in establishing that generic aspects of PCR testing (e.g. nucleic acid extraction and absence of PCR inhibitors) are performing as expected. Implementation of the use of the T4 and QBeta phages as internal positive controls has improved the quality of molecular testing, through more sensitive assessment of the effect of PCR inhibitors and confidence in results generated when testing atypical samples (i.e. plankton, dirt, feed).

The use of these controls in diagnostic testing will assist diagnostic laboratories to monitor the performance of current methods and assist with technology transfer of new methods. This will, in turn, provide laboratories, industry, regulators (managers and policy makers), the general public and trade partners with enhanced confidence in Australia’s diagnostic capability for important exotic and endemic aquatic pathogens.
Blank
Blank
View Filter

Species

Organisation