18 results
Adoption
PROJECT NUMBER • 2018-127
PROJECT STATUS:
COMPLETED

Validation and implementation of rapid test kits for detection of OsHV-1

Following the outbreak of Pacific Oyster Mortality Syndrome (POMS) in the Port River, South Australia in summer 2017-18, a need was identified for rapid diagnostic technology for OsHV-1, the causative agent of POMS. During the February 2016 OsHV-1 outbreak in Tasmania, tracing activities in...
ORGANISATION:
SARDI Food Safety and Innovation
Environment
PROJECT NUMBER • 2017-051
PROJECT STATUS:
COMPLETED

Seafood CRC: Extending biotoxin capability and research in Australia through development of an experimental biotoxin contamination facility to target industry relevant issues

A short-term experimental biotoxin contamination facility was set up at Roseworthy, South Australia, to examine the uptake and depuration of marine biotoxins from one of the most toxic dinoflagellates known, Alexandrium catenella. Over the period of one year, SARDI’s Seafood Food Safety group...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
PROJECT NUMBER • 2016-807
PROJECT STATUS:
COMPLETED

Future oysters CRC-P: Species diversification to provide alternatives for commercial production

Pacific Oyster Mortality Syndrome (POMS), the disease caused by OsHV-1 microvariant, results in high and rapid mortality in Pacific Oysters (Crassostrea gigas) and has been responsible for significant economic loss to oyster industries in Australia and around the world. The diversification of...
ORGANISATION:
SARDI Food Safety and Innovation

Future Oysters CRC-P: Advanced aquatic disease surveillance for known and undefined oyster pathogens

Project number: 2016-806
Project Status:
Completed
Budget expenditure: $829,300.00
Principal Investigator: Marty R. Deveney
Organisation: SARDI Food Safety and Innovation
Project start/end date: 17 Apr 2017 - 29 Jul 2019
Contact:
FRDC

Need

During the February 2016 OsHV-1 outbreak in Tasmania, tracing activities in Tasmania and South Australia required substantial follow-up and surveillance to define diseased areas and prove that response measures had prevented entry of OsHV-1. This surveillance was expensive, and PIRSA and DPIPWE developed a strategy to decrease cost for future surveillance. Cost estimates for ongoing surveillance for early detection have been prohibitive, and both the Australian Pacific oyster aquaculture industries and State governments have expressed a need for more cost effective surveillance options for monitoring disease in affected areas and early detection in currently unaffected regions.

Winter mortality is a major cost impost on the Sydney Rock Oyster industry. Its current status as a syndrome of unknown cause prevents methods from being developed to minimise losses, and an improved understanding of its cause is required to begin to develop management strategies. Mitigating losses will increase profitability for the Sydney rock oyster industry.

SA oyster mortality syndrome (SAMS) is a sporadic, regionally concentrated occurrence of high mortality that is not associated with readily detectable pathogens. The use of the terms SAMS implies that these mortalities have commonalities but this is not proven. This project will aim to provide a focused approach to developing a case definition for SAMS and as a result help direct mitigation strategies to reduce or remove the problem. If a cause can be isolated, an on farm decision tool swill be developed to allow better ‘trigger point’ identification for when farm managers need to engage diagnosticians or instigate identified mitigations strategies.

Objectives

1. Winter mortality: causative agent investigation, case definition, management strategies, improved husbandry and validate WM resistance assessments for Sydney rock oysters
2. SA mortality syndrome: causative agent investigation, improved understanding of causes, case definition, improved diagnostic technologies and improved husbandry to maximise survival
3. POMS: improved surveillance methods for early detection, to manage spread and understand transmission, novel detection and enumeration method based on flow cytometry

Final report

ISBN: 978-1-876007-24-9
Author: Marty R Deveney & Kathryn H Wiltshire (Editors)
Final Report • 2020-03-01 • 12.34 MB
2016-806 DLD.pdf

Summary

This project improved understanding of methods for surveillance for several diseases of farmed oysters. Surveillance is a critical component of biosecurity and aquatic animal health activities.  Surveillance supports understanding health status of populations of animals, provides evidence to support claims of freedom or understanding prevalence and increases the likelihood that a new or emergent disease can be controlled.

Mollusc diseases are less well understood than terrestrial animal and many finfish diseases and this project sought to develop understanding of three oyster diseases of substantial economic impact in the Australilan edible oyster aquaculture industries:

Pacific Oyster mortality syndrome (POMS), South Australian mortality syndrome (SAMS), and winter mortality (WM). 

 
The project included activities with four main aims:
 - Improving understanding of tests for OsHV-1 and investigation of using these tests for area surveillance.
 - Development of a low-cost, rapid test for OsHV-1.
 - Refinement of the case definition and investigation of the cause of SAMS in Pacific Oysters.
 - Development of a case definition and improving understanding of the cause of Winter Mortality in Sydney Rock Oysters. 
Industry
PROJECT NUMBER • 2015-229
PROJECT STATUS:
COMPLETED

Oysters Australia IPA -workshop – identifying knowledge gaps for development of the native oyster aquaculture industry in South Australia

The 2015-229 “Oysters Australia IPA - workshop - identifying knowledge gaps for development of the native oyster aquaculture industry in South Australia” brought together oyster farmers, hatchery operators and scientists from across Australia to share their knowledge and experience with native...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
PROJECT NUMBER • 2015-037
PROJECT STATUS:
COMPLETED

Oysters Australia IPA: the use of FRNA bacteriophages for rapid re-opening of growing areas after sewage spills

The South Australian Research and Development Institute (SARDI) Food Safety and Innovation (FSI) group with the support of the Fisheries Research and Development Corporation (FRDC), TasWater, Central Coast Council, Port Macquarie-Hastings Council, Shoalhaven Council, New South Wales Food Authority...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
Industry
PROJECT NUMBER • 2009-752
PROJECT STATUS:
COMPLETED

Seafood CRC: overseas market access for shellfish

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export....
ORGANISATION:
SARDI Food Safety and Innovation
Industry
PROJECT NUMBER • 2007-700
PROJECT STATUS:
COMPLETED

Seafood CRC: a critical evaluation of supply-chain temperature profiles to optimise food safety and quality of Australian oysters

The majority of Australian oyster production occurs in New South Wales, Tasmania and South Australia. New South Wales industry produces both the Sydney Rock Oyster and the Pacific Oyster. The Tasmanian and South Australian industries produce the Pacific Oyster. Temperature requirements in the Export...
ORGANISATION:
SARDI Food Safety and Innovation
Industry
PROJECT NUMBER • 2002-414
PROJECT STATUS:
COMPLETED

Development of techniques for quantification of stress-induced catecholamine changes in the hemolymph of the Pacific oyster (Crassostrea gigas)

As a result of the development of a protocol for oyster blood sample collection, preservation and transportation and subsequent catecholamine analysis during the course of this project, a test now exists which can be used to measure stress in oysters. This test will be used in the...
ORGANISATION:
SARDI Food Safety and Innovation

Development of techniques for production of homozygous Pacific oysters

Project number: 2002-204
Project Status:
Completed
Budget expenditure: $247,312.84
Principal Investigator: Xiaoxu Li
Organisation: SARDI Food Safety and Innovation
Project start/end date: 29 Jun 2002 - 30 Sep 2008
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence
View Filter