74,283 results
Environment
PROJECT NUMBER • 2015-216
PROJECT STATUS:
COMPLETED

Informing inter-jurisdictional snapper management in eastern Australia

Snapper has been fished since the early development of the colony around Sydney Harbour in the late 18th century, but it was the arrival of steam power in the 1860’s that enabled fishers to start regularly targeting the abundant schools of snapper occurring in the deep-water fishing grounds...
ORGANISATION:
Department of Primary Industries (QLD)
SPECIES
Industry
PROJECT NUMBER • 2015-215
PROJECT STATUS:
COMPLETED

Low cost management regimes for sustainable, small low-value fisheries based on coastal inshore species

This study provides a comprehensive, process-based guidance to developing low-cost management regimes for small-scale, low-value fisheries. The approach outlined is strongly “bottom-up” in that it seeks to identify pragmatic options and provide practical advice that specifically...
ORGANISATION:
CSIRO Oceans and Atmosphere Hobart
Industry
PROJECT NUMBER • 2015-213
PROJECT STATUS:
COMPLETED

Enabling land-based production of juvenile Yellowtail Kingfish in NSW

NSW DPI conducted a series of experiments and commercial-scale production to investigate the viability of producing advanced juvenile yellowtail kingfish (YTK, Seriola lalandi) at the Port Stephens Fisheries Institute (PSFI) during March 2016 - December 2018. There is a significant shortfall of...
ORGANISATION:
Department of Primary Industries and Regional Development (NSW)
Industry
PROJECT NUMBER • 2015-212
PROJECT STATUS:
COMPLETED

SafeFish - research to support food safety, trade and market access

SafeFish is an initiative that was developed by the South Australian Research and Development Institute (SARDI) with Australian Seafood Cooperative Research Centre (ASCRC) funding in 2010 (Project 2010-752-10: SafeFish – Seafood Trade Expert Panel). The project ran until the cessation of the...
ORGANISATION:
SARDI Food Safety and Innovation
Adoption
Environment
PROJECT NUMBER • 2015-208
PROJECT STATUS:
COMPLETED

Developing a National Bycatch Reporting System

Bycatch from fishing (the unintended, non-targeted organisms caught when targeting particular species or sizes of species) remains one of the most important issues concerning the world’s fisheries. And discards are considered the most important component of bycatch because they represent a...
ORGANISATION:
IC Independent Consulting Pty Ltd
Industry
PROJECT NUMBER • 2015-205
PROJECT STATUS:
CURRENT

Indigenous fishing subprogram: mapping livelihood values of Indigenous customary fishing

This report contains the results of the largest research project into Indigenous fishing values to date, documenting how and why use and management of marine resources is valued by and benefits Indigenous peoples and communities in three very different parts of Australia. The Indigenous Reference...
ORGANISATION:
Australian Institute of Aboriginal and Torres Strait Islander Studies (AIATSIS)
Industry
PROJECT NUMBER • 2015-204
PROJECT STATUS:
COMPLETED

Realising economic returns of reducing waste through utilisation of bycatch in the GAB Trawl Sector of the SESSF

Fisheries bycatch reduction and utilisation is an important topic in the western world in both policy and research developments. At an international level, the FAO Code of Conduct for Responsible Fisheries directs management agencies and fisheries to reduce discards through development and...
ORGANISATION:
Fishwell Consulting Pty Ltd
Industry
PROJECT NUMBER • 2015-203
PROJECT STATUS:
COMPLETED

Best practice guidelines for Australian fisheries management agencies

The project was developed in consultation with the Australian Fisheries Management Authority and State/Territory fisheries agencies. The idea of a publicly available set of standards or guidelines for marine fishery management agencies has been under discussion within fisheries agencies for some...
ORGANISATION:
CSIRO Oceans and Atmosphere Hobart

Maximising net economic returns from a multispecies fishery

Project number: 2015-202
Project Status:
Completed
Budget expenditure: $229,305.00
Principal Investigator: Sean Pascoe
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 30 Jun 2015 - 28 Sep 2017
Contact:
FRDC

Need

An objective of the Fisheries Management Act 1991 is ‘maximising the net economic returns to the Australian community from the management of fisheries’, which has been interpreted as achieving the biomass that, on average, produces maximum economic yield (BMEY) in the Commonwealth Fisheries Harvest Strategy 2007 and the more recent Borthwick (2012) and DAFF (2013) Reviews cited earlier.

To date, only two Australian fisheries (the Northern Prawn Fishery (Punt et al 2011) and the Great Australian Bight trawl fishery (Kompas et al 2013) have models suitable for assessing MEY. These are data rich fishery, both in terms of economic and biological information. Methods for estimating proxy target reference points in single and multispecies fisheries have recently been developed (FRDC 2011/200 and FRDC 2010/044) but not yet applied in any fishery. Other approaches have also been developed elsewhere (e.g. FRDC 2008/08). These methods have not accounted for environmental externalities, particularly in terms of bycatch and discards, which may affect the optimal outcome. A range of other complications were also identified during a technical review of economic issues (FRDC 2012/225) and the review of the Commonwealth Policy on fisheries bycatch.

Developing harvest strategies that maximise net economic returns is a different problem to that of identifying targets. The latter is an endpoint while the former is the process to achieve the end point. The purpose and aim of this project is to establish a practical and cost effective method for managing a multispecies fishery towards maximising net economic returns as a whole, taking into account non-target catches.

Objectives

1. Development of a methodology for maximising net economic return to a multispecies fishery as a whole, and with regard to by-catch and discard species
2. Development of a framework to operationalise the methodology into fisheries management objectives

Final report

ISBN: 978-1-4863-1076-0
Authors: Pascoe S. Hutton T. Hoshino E. Sporcic M. Yamazaki S. and Kompas T.
Final Report • 2018-06-01 • 1.45 MB
2015-202-DLD.pdf

Summary

Achieving fishery MEY may result in a reduction in net economic returns in a broader sense if the loss to consumers exceeds the gain to the industry. Such a loss may occur if supplies to the local market are reduced and prices paid by consumers increase. This results in a transfer of benefits from consumers to producers, which is considered undesirable in itself. However, if the loss to consumers is greater than the gain to producers then overall there is a loss of net economic returns. Similarly, the disutility associated
with bycatch in fisheries may also affect our interpretation of “optimal” yields if non‐monetary values are assigned. The “generic” multispecies bioeconomic model was used to estimate the impact on target fishing mortality rates of broadening the consideration of net economic returns to include also changes in consumer surplus and inclusion of non‐market values associated with bycatch. The model is run stochastically while maximising profit but varying the number of species caught, their biological characteristics and prices, fishing costs, price flexibilities, bycatch rates and values.

The results of the analysis were largely as expect, namely that including consumer benefits into the definition of MEY resulted in a higher optimal level of fishing effort and yield, while including non‐market costs associated with discards resulted in a lower optimal level of fishing effort and yield. The degree to which these factors affected the definition of MEY was, unsurprisingly, related to their overall magnitude relative to the benefits to the fishery.

Implementing MEY, once identified, also has several challenges. The study considered a range of harvest control rules, as well as other potential management options. The results of the model analysis suggest that “hockey‐stick” harvest control rules in multispecies fisheries may overly restrict the catch of species that are currently above their target biomass. Given the higher abundance, catch of these species is likely to result in increased discarding and lower economic returns than might otherwise be achieved. An alternative harvest control rule that allowed higher than “optimal” fishing mortality rates for species that were above their target biomass resulted in less discarding and higher economic returns.

Having quota on too many species may be counterproductive, as the fishery is largely constrained by the quota for the main species. Imposing quotas also on secondary species can result in a situation where a minor species becomes a “choke” species, restricting the total fishery for little benefit. Reducing the number of species subject to quota constraints to only those that were most important (in terms of revenue) resulted in improved economic performance of the fishery as well as lower levels of discarding. However, in the model changes in targeting ability of the fleet was not considered, so monitoring of fisher behaviour in response to proposed management regimes that only have a few species under quota would
be essential.
Final Report • 2018-06-01 • 1.45 MB
2015-202-DLD.pdf

Summary

Achieving fishery MEY may result in a reduction in net economic returns in a broader sense if the loss to consumers exceeds the gain to the industry. Such a loss may occur if supplies to the local market are reduced and prices paid by consumers increase. This results in a transfer of benefits from consumers to producers, which is considered undesirable in itself. However, if the loss to consumers is greater than the gain to producers then overall there is a loss of net economic returns. Similarly, the disutility associated
with bycatch in fisheries may also affect our interpretation of “optimal” yields if non‐monetary values are assigned. The “generic” multispecies bioeconomic model was used to estimate the impact on target fishing mortality rates of broadening the consideration of net economic returns to include also changes in consumer surplus and inclusion of non‐market values associated with bycatch. The model is run stochastically while maximising profit but varying the number of species caught, their biological characteristics and prices, fishing costs, price flexibilities, bycatch rates and values.

The results of the analysis were largely as expect, namely that including consumer benefits into the definition of MEY resulted in a higher optimal level of fishing effort and yield, while including non‐market costs associated with discards resulted in a lower optimal level of fishing effort and yield. The degree to which these factors affected the definition of MEY was, unsurprisingly, related to their overall magnitude relative to the benefits to the fishery.

Implementing MEY, once identified, also has several challenges. The study considered a range of harvest control rules, as well as other potential management options. The results of the model analysis suggest that “hockey‐stick” harvest control rules in multispecies fisheries may overly restrict the catch of species that are currently above their target biomass. Given the higher abundance, catch of these species is likely to result in increased discarding and lower economic returns than might otherwise be achieved. An alternative harvest control rule that allowed higher than “optimal” fishing mortality rates for species that were above their target biomass resulted in less discarding and higher economic returns.

Having quota on too many species may be counterproductive, as the fishery is largely constrained by the quota for the main species. Imposing quotas also on secondary species can result in a situation where a minor species becomes a “choke” species, restricting the total fishery for little benefit. Reducing the number of species subject to quota constraints to only those that were most important (in terms of revenue) resulted in improved economic performance of the fishery as well as lower levels of discarding. However, in the model changes in targeting ability of the fleet was not considered, so monitoring of fisher behaviour in response to proposed management regimes that only have a few species under quota would
be essential.
Final Report • 2018-06-01 • 1.45 MB
2015-202-DLD.pdf

Summary

Achieving fishery MEY may result in a reduction in net economic returns in a broader sense if the loss to consumers exceeds the gain to the industry. Such a loss may occur if supplies to the local market are reduced and prices paid by consumers increase. This results in a transfer of benefits from consumers to producers, which is considered undesirable in itself. However, if the loss to consumers is greater than the gain to producers then overall there is a loss of net economic returns. Similarly, the disutility associated
with bycatch in fisheries may also affect our interpretation of “optimal” yields if non‐monetary values are assigned. The “generic” multispecies bioeconomic model was used to estimate the impact on target fishing mortality rates of broadening the consideration of net economic returns to include also changes in consumer surplus and inclusion of non‐market values associated with bycatch. The model is run stochastically while maximising profit but varying the number of species caught, their biological characteristics and prices, fishing costs, price flexibilities, bycatch rates and values.

The results of the analysis were largely as expect, namely that including consumer benefits into the definition of MEY resulted in a higher optimal level of fishing effort and yield, while including non‐market costs associated with discards resulted in a lower optimal level of fishing effort and yield. The degree to which these factors affected the definition of MEY was, unsurprisingly, related to their overall magnitude relative to the benefits to the fishery.

Implementing MEY, once identified, also has several challenges. The study considered a range of harvest control rules, as well as other potential management options. The results of the model analysis suggest that “hockey‐stick” harvest control rules in multispecies fisheries may overly restrict the catch of species that are currently above their target biomass. Given the higher abundance, catch of these species is likely to result in increased discarding and lower economic returns than might otherwise be achieved. An alternative harvest control rule that allowed higher than “optimal” fishing mortality rates for species that were above their target biomass resulted in less discarding and higher economic returns.

Having quota on too many species may be counterproductive, as the fishery is largely constrained by the quota for the main species. Imposing quotas also on secondary species can result in a situation where a minor species becomes a “choke” species, restricting the total fishery for little benefit. Reducing the number of species subject to quota constraints to only those that were most important (in terms of revenue) resulted in improved economic performance of the fishery as well as lower levels of discarding. However, in the model changes in targeting ability of the fleet was not considered, so monitoring of fisher behaviour in response to proposed management regimes that only have a few species under quota would
be essential.
Final Report • 2018-06-01 • 1.45 MB
2015-202-DLD.pdf

Summary

Achieving fishery MEY may result in a reduction in net economic returns in a broader sense if the loss to consumers exceeds the gain to the industry. Such a loss may occur if supplies to the local market are reduced and prices paid by consumers increase. This results in a transfer of benefits from consumers to producers, which is considered undesirable in itself. However, if the loss to consumers is greater than the gain to producers then overall there is a loss of net economic returns. Similarly, the disutility associated
with bycatch in fisheries may also affect our interpretation of “optimal” yields if non‐monetary values are assigned. The “generic” multispecies bioeconomic model was used to estimate the impact on target fishing mortality rates of broadening the consideration of net economic returns to include also changes in consumer surplus and inclusion of non‐market values associated with bycatch. The model is run stochastically while maximising profit but varying the number of species caught, their biological characteristics and prices, fishing costs, price flexibilities, bycatch rates and values.

The results of the analysis were largely as expect, namely that including consumer benefits into the definition of MEY resulted in a higher optimal level of fishing effort and yield, while including non‐market costs associated with discards resulted in a lower optimal level of fishing effort and yield. The degree to which these factors affected the definition of MEY was, unsurprisingly, related to their overall magnitude relative to the benefits to the fishery.

Implementing MEY, once identified, also has several challenges. The study considered a range of harvest control rules, as well as other potential management options. The results of the model analysis suggest that “hockey‐stick” harvest control rules in multispecies fisheries may overly restrict the catch of species that are currently above their target biomass. Given the higher abundance, catch of these species is likely to result in increased discarding and lower economic returns than might otherwise be achieved. An alternative harvest control rule that allowed higher than “optimal” fishing mortality rates for species that were above their target biomass resulted in less discarding and higher economic returns.

Having quota on too many species may be counterproductive, as the fishery is largely constrained by the quota for the main species. Imposing quotas also on secondary species can result in a situation where a minor species becomes a “choke” species, restricting the total fishery for little benefit. Reducing the number of species subject to quota constraints to only those that were most important (in terms of revenue) resulted in improved economic performance of the fishery as well as lower levels of discarding. However, in the model changes in targeting ability of the fleet was not considered, so monitoring of fisher behaviour in response to proposed management regimes that only have a few species under quota would
be essential.
View Filter

Species

Organisation