77,994 results

SRL IPA: Rocklobster Trans Tasman cooperation workshop

Project number: 2013-232
Project Status:
Completed
Budget expenditure: $28,142.00
Principal Investigator: Ross J. Hodge
Organisation: Southern Rocklobster Ltd (SRL)
Project start/end date: 9 Oct 2013 - 27 Feb 2014
Contact:
FRDC

Need

In recent times there has been considerable progress made in collaboration between the Rock Lobster and Abalone industries in addressing trade and market barriers in the direct trade of product into the key market of China. The benefits of collaboration between these fishery sectors highlights the benefits from industry groups focusing on collaboration rather than competitiveness to achieve mutual outcomes.
All Australian and New Zealand rock Lobster fisheries are on quota management which ultimately limits the amount of product than can be supplied. In the case of the China market not only is the lobster from these fisheries held in the highest of regard, i.e. superior eating qualities, it can easily accept the majority of the product produced by all these fisheries. The various operations across the rock lobster supply chain are made up of small family type businesses to larger cooperatives (e.g Geraldton Fisherman's Coop) and working collectively outcomes can be achieved that may not even be considered individually.
Identifying the common matters that can be worked on collaboratively has the potential to achieve economies of scale through efficiencies gained in better organisation and shared investment in key projects and programs. Ultimately this will lead to an increase in the value from investment in R&D and increased extension/uptake of outcomes from projects.
This is possibly a "one off'" opportunity to engage all the stakeholders, particularly those involved in the post harvest sector of the various Trans Tasman Rock Lobster fisheries to participate in such a workshop.

Objectives

1. Identify and prioritise opportunities for colloboration in Rock Lobster R&D, market research, marketing and generic promotion between the Australian rock lobster industry (Southern Rock Lobster and Western Rock Lobster) and the New Zealand industry.
2. Establish a forum for ongoing dialogue between Trans Tasman Rock Lobster Fisheries
3. Document the outcomes of the workshop including an action plan for implementation of identified priority collaborative opportunities

IPA APFA: Characterising and managing harmful algal blooms that cause production loss on Australian prawn farms

Project number: 2013-231
Project Status:
Completed
Budget expenditure: $108,748.00
Principal Investigator: David Mann
Organisation: Department of Primary Industries (QLD)
Project start/end date: 9 Apr 2014 - 29 Jun 2017
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence

Tactical Research Fund: Defining a resource sharing option in a multi-sectoral fishery: using the Queensland Coral Reef Finfish Fishery as a test case

Project number: 2013-230
Project Status:
Completed
Budget expenditure: $60,698.82
Principal Investigator: Andrew & Renae Tobin
Organisation: James Cook University (JCU)
Project start/end date: 30 Oct 2013 - 2 Nov 2014
Contact:
FRDC

Need

The Management Plan for the Queensland Coral Reef Fin Fish Fishery will be reviewed in 2012. At
the recent FRDC-funded workshop, fishery stakeholders agreed on a vision for the fishery as well as
the need for a collaborative resource sharing agreement. Finite coral reef fin fish resources are
accessed by multiple extractive user-groups (commercial, recreational, charter, indigenous fishers),
and are also of interest to conservation bodies, management agencies and the general public.
Currently the commercial CPUE of both major species are unstable (FRDC 2008/103), recreational
effort increases have occurred in some areas (GBRMPA, unpub data), growth in the charter sector
has some long-term participants concerned while data paucity for the indigenous sector needs
attention. In order to restore confidence in the social, economic and ecological sustainability of this
fishery, and ensure multi-stakeholder satisfaction, a resource sharing agreement needs to be defined.

The project will define a resource sharing agreement that will be presented to the Fisheries Minister
and his department for adoption. Stakeholders will also identify key areas of data deficiency and
workshop solutions for obtaining such.

Objectives

1. Identify a resource sharing option for the Coral Reef Fin Fish Fishery

Final report

ISBN: 978-0-9944984-5-8
Author: Andrew Tobin

Tactical Research Fund: Addressing the urgent need to identify viable refrigerant alternatives for use in the Northern Prawn Fishery

Project number: 2013-227
Project Status:
Completed
Budget expenditure: $80,908.22
Principal Investigator: Annie Jarrett
Organisation: NPF Industry Pty Ltd
Project start/end date: 9 Oct 2013 - 30 Dec 2014
Contact:
FRDC

Need

High capacity, reliable refrigeration systems are essential for provision of quality seafood, particularly from remote areas of the Northern Prawn Fishery (NPF). Recent policy changes by the DSEWPaC to pursue reduced greenhouse gas emission targets will result in phasing out of the most commonly used refrigerant, R22. The proposed shift towards use of natural refrigerants has highlighted a need to urgently consider alternative options suitable to fishing operations in the NPF, and review practice and system design changes that may be required.

Adaptation to natural refrigerants may be a viable option for land-based refrigeration systems, however the size, complexity, location and purpose of refrigeration systems used aboard NPF vessels are likely to prevent adaptation or modification of existing systems without significant safety, operational and/or cost implications which are impractical and unsustainable for NPF operators.

Significant seasonal/spatial variability in availability of target prawn species can radically influence refrigeration load requirements in the NPF. Consequently, NPF systems are uniquely designed with capacity to snap freeze 5 tons of 25°C product down to -18°C in 8–12 hours, with a holding capacity at -35°C of 30–40 tonnes. This freezing and storage capacity is uncommon among refrigeration systems, particularly among vessel-mounted systems. Consequently, alternative options are likely to significantly limit freezing capacity of NPF vessels, impacting on the economic value of Australia’s most valuable Commonwealth-managed fishery.

Additional factors including the significant distance between fishing grounds and ports, limited ability of vessel engineers to maintain complex refrigeration systems, and significant dangers associated with use of highly volatile refrigerant alternatives also necessitate use of safe, simple, reliable refrigeration systems, further limiting adaptive options able to be applied to NPF vessels.

There is an urgent need to review options able to be applied to NPF fishing systems and identify an uncomplicated, reliable, high capacity, compact and inexpensive solution.

Objectives

1. Undertake detailed review of refrigerant alternatives to R22 that are able to be applied on NPF vessels. Evaluate associated advantages and disadvantages of each, including an estimate of the costs per vessel associated with implementation of alternatives.
2. Identify a simple, cost effective, reliable solution to the impending phasing out of R22 in Australia
3. Extend key findings to target audiences - particularly NPF operators, government officials and political representatives

Final report

Author: Annie Jarrett
Final Report • 2015-05-15 • 7.33 MB
2013-227-DLD.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption. 

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable, typically selling for $110 per kilogram with an average vessel requiring from 200 to 300 kilograms.

Further down the supply chain, the very large refrigeration system around which the SFM (Sydney Fish Market) is built, is also at the end of its design life and reliant on more than half a million dollars of the same refrigerant, HCFC-22. The SFM have few of the mechanical constraints and conditions of the NPF fleet, however it has other significant issues that have to be managed in design and replacement of the existing system. Aside from the logistics of replacing a working system of this size, in a facility that requires 7 days per week operation to maintain the stock in trade, the locality of the SFM, on the edge of the largest CBD in Australia, in the middle of an active tourism, retail and hospitality precinct, means that the use of certain refrigerants that have potential safety issues is unlikely to be acceptable, even though they may be the best technical solution to the requirements.

Recent policy changes by the Department of Sustainability, Environment, Water, Population and Communities (now Department of Environment) to pursue reduced greenhouse gas emission targets by imposing a carbon based levy on HFC refrigerants in conjunction with the phase out of HCFC refrigerants including the most commonly used refrigerant R22 under the Montreal Protocol leaves the NPF fleet with a technical, commercial and OHS dilemma. The proposed shift towards the use of low GWP refrigerant such as natural refrigerants has highlighted a need to urgently consider alternative options suitable to fishing operations in the NPF, and review practice and system design changes that may be required.

Project products

Report • 2015-05-15 • 8.29 MB
2013-227-DLD Appendix report.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption.

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable. 

As a result of the age of the NPF fleet, the majority of refrigeration equipment employed is also at, or well past its original design life, making the potential for component failure increasingly likely, with the potential for total loss of the very expensive refrigerant. 

This report examines a number of options for the NPF fleet to transition to technology that provides the best mix of performance, reliability and affordability, while proposing a process for minimising the design risk for individual vessel owners. The future technology options however are clouded by new rounds of international discussions and proposals to restrict the use of what might be the best refrigerant option for vessel owners to move to. The long life of refrigeration plant means that even proposals to restrict availability of a refrigerant in 10 or 12 years needs consideration in design decisions now. 

Final Report • 2015-05-15 • 7.33 MB
2013-227-DLD.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption. 

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable, typically selling for $110 per kilogram with an average vessel requiring from 200 to 300 kilograms.

Further down the supply chain, the very large refrigeration system around which the SFM (Sydney Fish Market) is built, is also at the end of its design life and reliant on more than half a million dollars of the same refrigerant, HCFC-22. The SFM have few of the mechanical constraints and conditions of the NPF fleet, however it has other significant issues that have to be managed in design and replacement of the existing system. Aside from the logistics of replacing a working system of this size, in a facility that requires 7 days per week operation to maintain the stock in trade, the locality of the SFM, on the edge of the largest CBD in Australia, in the middle of an active tourism, retail and hospitality precinct, means that the use of certain refrigerants that have potential safety issues is unlikely to be acceptable, even though they may be the best technical solution to the requirements.

Recent policy changes by the Department of Sustainability, Environment, Water, Population and Communities (now Department of Environment) to pursue reduced greenhouse gas emission targets by imposing a carbon based levy on HFC refrigerants in conjunction with the phase out of HCFC refrigerants including the most commonly used refrigerant R22 under the Montreal Protocol leaves the NPF fleet with a technical, commercial and OHS dilemma. The proposed shift towards the use of low GWP refrigerant such as natural refrigerants has highlighted a need to urgently consider alternative options suitable to fishing operations in the NPF, and review practice and system design changes that may be required.

Report • 2015-05-15 • 8.29 MB
2013-227-DLD Appendix report.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption.

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable. 

As a result of the age of the NPF fleet, the majority of refrigeration equipment employed is also at, or well past its original design life, making the potential for component failure increasingly likely, with the potential for total loss of the very expensive refrigerant. 

This report examines a number of options for the NPF fleet to transition to technology that provides the best mix of performance, reliability and affordability, while proposing a process for minimising the design risk for individual vessel owners. The future technology options however are clouded by new rounds of international discussions and proposals to restrict the use of what might be the best refrigerant option for vessel owners to move to. The long life of refrigeration plant means that even proposals to restrict availability of a refrigerant in 10 or 12 years needs consideration in design decisions now. 

Final Report • 2015-05-15 • 7.33 MB
2013-227-DLD.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption. 

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable, typically selling for $110 per kilogram with an average vessel requiring from 200 to 300 kilograms.

Further down the supply chain, the very large refrigeration system around which the SFM (Sydney Fish Market) is built, is also at the end of its design life and reliant on more than half a million dollars of the same refrigerant, HCFC-22. The SFM have few of the mechanical constraints and conditions of the NPF fleet, however it has other significant issues that have to be managed in design and replacement of the existing system. Aside from the logistics of replacing a working system of this size, in a facility that requires 7 days per week operation to maintain the stock in trade, the locality of the SFM, on the edge of the largest CBD in Australia, in the middle of an active tourism, retail and hospitality precinct, means that the use of certain refrigerants that have potential safety issues is unlikely to be acceptable, even though they may be the best technical solution to the requirements.

Recent policy changes by the Department of Sustainability, Environment, Water, Population and Communities (now Department of Environment) to pursue reduced greenhouse gas emission targets by imposing a carbon based levy on HFC refrigerants in conjunction with the phase out of HCFC refrigerants including the most commonly used refrigerant R22 under the Montreal Protocol leaves the NPF fleet with a technical, commercial and OHS dilemma. The proposed shift towards the use of low GWP refrigerant such as natural refrigerants has highlighted a need to urgently consider alternative options suitable to fishing operations in the NPF, and review practice and system design changes that may be required.

Report • 2015-05-15 • 8.29 MB
2013-227-DLD Appendix report.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption.

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable. 

As a result of the age of the NPF fleet, the majority of refrigeration equipment employed is also at, or well past its original design life, making the potential for component failure increasingly likely, with the potential for total loss of the very expensive refrigerant. 

This report examines a number of options for the NPF fleet to transition to technology that provides the best mix of performance, reliability and affordability, while proposing a process for minimising the design risk for individual vessel owners. The future technology options however are clouded by new rounds of international discussions and proposals to restrict the use of what might be the best refrigerant option for vessel owners to move to. The long life of refrigeration plant means that even proposals to restrict availability of a refrigerant in 10 or 12 years needs consideration in design decisions now. 

Final Report • 2015-05-15 • 7.33 MB
2013-227-DLD.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption. 

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable, typically selling for $110 per kilogram with an average vessel requiring from 200 to 300 kilograms.

Further down the supply chain, the very large refrigeration system around which the SFM (Sydney Fish Market) is built, is also at the end of its design life and reliant on more than half a million dollars of the same refrigerant, HCFC-22. The SFM have few of the mechanical constraints and conditions of the NPF fleet, however it has other significant issues that have to be managed in design and replacement of the existing system. Aside from the logistics of replacing a working system of this size, in a facility that requires 7 days per week operation to maintain the stock in trade, the locality of the SFM, on the edge of the largest CBD in Australia, in the middle of an active tourism, retail and hospitality precinct, means that the use of certain refrigerants that have potential safety issues is unlikely to be acceptable, even though they may be the best technical solution to the requirements.

Recent policy changes by the Department of Sustainability, Environment, Water, Population and Communities (now Department of Environment) to pursue reduced greenhouse gas emission targets by imposing a carbon based levy on HFC refrigerants in conjunction with the phase out of HCFC refrigerants including the most commonly used refrigerant R22 under the Montreal Protocol leaves the NPF fleet with a technical, commercial and OHS dilemma. The proposed shift towards the use of low GWP refrigerant such as natural refrigerants has highlighted a need to urgently consider alternative options suitable to fishing operations in the NPF, and review practice and system design changes that may be required.

Report • 2015-05-15 • 8.29 MB
2013-227-DLD Appendix report.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption.

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable. 

As a result of the age of the NPF fleet, the majority of refrigeration equipment employed is also at, or well past its original design life, making the potential for component failure increasingly likely, with the potential for total loss of the very expensive refrigerant. 

This report examines a number of options for the NPF fleet to transition to technology that provides the best mix of performance, reliability and affordability, while proposing a process for minimising the design risk for individual vessel owners. The future technology options however are clouded by new rounds of international discussions and proposals to restrict the use of what might be the best refrigerant option for vessel owners to move to. The long life of refrigeration plant means that even proposals to restrict availability of a refrigerant in 10 or 12 years needs consideration in design decisions now. 

Final Report • 2015-05-15 • 7.33 MB
2013-227-DLD.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption. 

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable, typically selling for $110 per kilogram with an average vessel requiring from 200 to 300 kilograms.

Further down the supply chain, the very large refrigeration system around which the SFM (Sydney Fish Market) is built, is also at the end of its design life and reliant on more than half a million dollars of the same refrigerant, HCFC-22. The SFM have few of the mechanical constraints and conditions of the NPF fleet, however it has other significant issues that have to be managed in design and replacement of the existing system. Aside from the logistics of replacing a working system of this size, in a facility that requires 7 days per week operation to maintain the stock in trade, the locality of the SFM, on the edge of the largest CBD in Australia, in the middle of an active tourism, retail and hospitality precinct, means that the use of certain refrigerants that have potential safety issues is unlikely to be acceptable, even though they may be the best technical solution to the requirements.

Recent policy changes by the Department of Sustainability, Environment, Water, Population and Communities (now Department of Environment) to pursue reduced greenhouse gas emission targets by imposing a carbon based levy on HFC refrigerants in conjunction with the phase out of HCFC refrigerants including the most commonly used refrigerant R22 under the Montreal Protocol leaves the NPF fleet with a technical, commercial and OHS dilemma. The proposed shift towards the use of low GWP refrigerant such as natural refrigerants has highlighted a need to urgently consider alternative options suitable to fishing operations in the NPF, and review practice and system design changes that may be required.

Report • 2015-05-15 • 8.29 MB
2013-227-DLD Appendix report.pdf

Summary

Modern fishing fleets and the fish product supply chains are entirely dependent on effective and reliable refrigeration systems, from the point of catch to consumption.

The fishing vessels of the NPF (Northern Prawn Fishery) have one of the most demanding tasks for refrigeration equipment, operating in constrained spaces, under heavy load, in high ambient temperatures, requiring snap freezing of tonnes of sensitive product using equipment operating in a moving vessel, with heavy vibration and exposed to corrosive salt spray and water. Aside from the severe mechanical constraints and conditions, this demanding refrigeration task is only easily achieved using HCFC-22 (R22), a refrigerant that is on the verge of being completely phased out within a matter of years. HCFC-22 is rapidly becoming unaffordable. 

As a result of the age of the NPF fleet, the majority of refrigeration equipment employed is also at, or well past its original design life, making the potential for component failure increasingly likely, with the potential for total loss of the very expensive refrigerant. 

This report examines a number of options for the NPF fleet to transition to technology that provides the best mix of performance, reliability and affordability, while proposing a process for minimising the design risk for individual vessel owners. The future technology options however are clouded by new rounds of international discussions and proposals to restrict the use of what might be the best refrigerant option for vessel owners to move to. The long life of refrigeration plant means that even proposals to restrict availability of a refrigerant in 10 or 12 years needs consideration in design decisions now. 

Industry
PROJECT NUMBER • 2013-226
PROJECT STATUS:
COMPLETED

Tactical Research Fund: Development of an industry representative framework for co-management in NSW Fisheries

The Professional Fishermen’s Association (PFA) was borne out of concern about the future of the commercial fishing industry in NSW. Concern was primarily on the decline in their long term rights to harvest seafood on the behalf of the community. While the PFA has grown and delivered an...
ORGANISATION:
Professional Fishers Association (PFA)

Tactical Research Fund: Developing a management framework and harvest strategies for small scale multi-species, multi-method community based fisheries, using the South Australian Lakes and Coorong Fishery as a case study

Project number: 2013-225
Project Status:
Completed
Budget expenditure: $60,000.00
Principal Investigator: Ian Knuckey
Organisation: Fishwell Consulting Pty Ltd
Project start/end date: 10 Oct 2013 - 10 Feb 2014
Contact:
FRDC

Need

There are inherent challenges in managing small scale multi-species, multi method fisheries, particularly in a community based fishery context, which require careful consideration in the development of appropriate harvest strategies. While there is a significant degree of targeting involved in multi-species fisheries, the majority of target species will not always be caught during individual gear sets, and the species composition of the catch may be spatially or temporally specific. It can be difficult to ensure that all species caught are fished sustainably (and not only the target species) because species have various life-history characteristics and productivities, and different degrees of susceptibility to the gear. Many species are caught by a variety of gears and it is often difficult to account for all sources of mortality in assessments and the different life stages targeted by particular gear types. The development of harvest strategies for data-poor fisheries presents additional challenges in attempting to reconcile available information and capacity with formal, defensible strategies that achieve the desired objectives for the fishery and fisheries legislation. There is a need for harvest strategies, particularly for community-based fisheries, to be easily understood and accepted by key stakeholders, pragmatic and cost effective.

The LCF is a small scale multi-species, multi-method community based fishery located at the end of the Murray-Darling system and is subject to varying environmental conditions (drought and flooding). The primary target species include Pipi, Yellow-eye Mullet, Golden Perch, Mulloway, Greenback Flounder and Black Bream. A number of other marine, estuarine and freshwater species (native and exotic) are also taken. The fishery contributes to the socio-economic well-being of regional coastal communities in the Lakes and Coorong region through commercial and recreational activity and harbors significant cultural and spiritual significance for the Ngarrindjeri people.

Objectives

1. Identify the attributes required in an environmentally limited fishery that can be used to determine optimal management frameworks.
2. Develop a set of performance indicators that can be used to support management of an environmentally diverse suite of species in a highly variable ecosystem.
3. Develop a framework that supports more flexible and adaptive management processes to provide for business adaptability and structural adjustment in the Fishery while limiting effort to the appropriate sustainable level.
4. Create a management framework that can be adapted for use across a range of small scale multi-species, multi-method community based fisheries.

Final report

ISBN: 978-0-9873286-9-4
Author: Ian Knuckey
Final Report • 2015-02-25 • 3.42 MB
2013-225-DLD.pdf

Summary

The commercial Lakes and Coorong Fishery (LCF) operates at the end of the Murray-Darling Basin where the river system meets the Southern Ocean, encompassing a diverse range of freshwater, estuarine and marine habitats and communities.  This multi-gear fishery targets a range of species including Pipi (Goolwa cockle - Donax deltoides), Mulloway (Argyrosomus japonicus), Yelloweye Mullet (Aldrichetta forsteri), Black Bream (Acanthopagrus butcheri), Greenback Flounder (Rhombosolea tapirina), Golden Perch (Macquaria ambigua), and Bony Bream (Nematalosa erebi) as well as the introduced fish species European Carp (Cyprinus carpio) and Redfin (Perca fluviatilis).  

The outputs of this project will be used to improve the performance of the LCF and will be directly incorporated into the development of harvest strategies developed for finfish species under the new fishery management plan due in 2015. The longer term outcome from this project is that the approach used to develop this management framework can be adapted to other similar fisheries around Australia. Using the capacity of the Australian Fisheries Management Forum, the development of fishery management frameworks and performance indicators will be provided to other jurisdictions to support fishery management improvement in other small-scale, multi-species, multi-method, community-based fisheries.

Keywords: Harvest Strategy, small-scale fisheries, Lakes and Coorong Fishery, data-poor fishery

Final Report • 2015-02-25 • 3.42 MB
2013-225-DLD.pdf

Summary

The commercial Lakes and Coorong Fishery (LCF) operates at the end of the Murray-Darling Basin where the river system meets the Southern Ocean, encompassing a diverse range of freshwater, estuarine and marine habitats and communities.  This multi-gear fishery targets a range of species including Pipi (Goolwa cockle - Donax deltoides), Mulloway (Argyrosomus japonicus), Yelloweye Mullet (Aldrichetta forsteri), Black Bream (Acanthopagrus butcheri), Greenback Flounder (Rhombosolea tapirina), Golden Perch (Macquaria ambigua), and Bony Bream (Nematalosa erebi) as well as the introduced fish species European Carp (Cyprinus carpio) and Redfin (Perca fluviatilis).  

The outputs of this project will be used to improve the performance of the LCF and will be directly incorporated into the development of harvest strategies developed for finfish species under the new fishery management plan due in 2015. The longer term outcome from this project is that the approach used to develop this management framework can be adapted to other similar fisheries around Australia. Using the capacity of the Australian Fisheries Management Forum, the development of fishery management frameworks and performance indicators will be provided to other jurisdictions to support fishery management improvement in other small-scale, multi-species, multi-method, community-based fisheries.

Keywords: Harvest Strategy, small-scale fisheries, Lakes and Coorong Fishery, data-poor fishery

Final Report • 2015-02-25 • 3.42 MB
2013-225-DLD.pdf

Summary

The commercial Lakes and Coorong Fishery (LCF) operates at the end of the Murray-Darling Basin where the river system meets the Southern Ocean, encompassing a diverse range of freshwater, estuarine and marine habitats and communities.  This multi-gear fishery targets a range of species including Pipi (Goolwa cockle - Donax deltoides), Mulloway (Argyrosomus japonicus), Yelloweye Mullet (Aldrichetta forsteri), Black Bream (Acanthopagrus butcheri), Greenback Flounder (Rhombosolea tapirina), Golden Perch (Macquaria ambigua), and Bony Bream (Nematalosa erebi) as well as the introduced fish species European Carp (Cyprinus carpio) and Redfin (Perca fluviatilis).  

The outputs of this project will be used to improve the performance of the LCF and will be directly incorporated into the development of harvest strategies developed for finfish species under the new fishery management plan due in 2015. The longer term outcome from this project is that the approach used to develop this management framework can be adapted to other similar fisheries around Australia. Using the capacity of the Australian Fisheries Management Forum, the development of fishery management frameworks and performance indicators will be provided to other jurisdictions to support fishery management improvement in other small-scale, multi-species, multi-method, community-based fisheries.

Keywords: Harvest Strategy, small-scale fisheries, Lakes and Coorong Fishery, data-poor fishery

Final Report • 2015-02-25 • 3.42 MB
2013-225-DLD.pdf

Summary

The commercial Lakes and Coorong Fishery (LCF) operates at the end of the Murray-Darling Basin where the river system meets the Southern Ocean, encompassing a diverse range of freshwater, estuarine and marine habitats and communities.  This multi-gear fishery targets a range of species including Pipi (Goolwa cockle - Donax deltoides), Mulloway (Argyrosomus japonicus), Yelloweye Mullet (Aldrichetta forsteri), Black Bream (Acanthopagrus butcheri), Greenback Flounder (Rhombosolea tapirina), Golden Perch (Macquaria ambigua), and Bony Bream (Nematalosa erebi) as well as the introduced fish species European Carp (Cyprinus carpio) and Redfin (Perca fluviatilis).  

The outputs of this project will be used to improve the performance of the LCF and will be directly incorporated into the development of harvest strategies developed for finfish species under the new fishery management plan due in 2015. The longer term outcome from this project is that the approach used to develop this management framework can be adapted to other similar fisheries around Australia. Using the capacity of the Australian Fisheries Management Forum, the development of fishery management frameworks and performance indicators will be provided to other jurisdictions to support fishery management improvement in other small-scale, multi-species, multi-method, community-based fisheries.

Keywords: Harvest Strategy, small-scale fisheries, Lakes and Coorong Fishery, data-poor fishery

Final Report • 2015-02-25 • 3.42 MB
2013-225-DLD.pdf

Summary

The commercial Lakes and Coorong Fishery (LCF) operates at the end of the Murray-Darling Basin where the river system meets the Southern Ocean, encompassing a diverse range of freshwater, estuarine and marine habitats and communities.  This multi-gear fishery targets a range of species including Pipi (Goolwa cockle - Donax deltoides), Mulloway (Argyrosomus japonicus), Yelloweye Mullet (Aldrichetta forsteri), Black Bream (Acanthopagrus butcheri), Greenback Flounder (Rhombosolea tapirina), Golden Perch (Macquaria ambigua), and Bony Bream (Nematalosa erebi) as well as the introduced fish species European Carp (Cyprinus carpio) and Redfin (Perca fluviatilis).  

The outputs of this project will be used to improve the performance of the LCF and will be directly incorporated into the development of harvest strategies developed for finfish species under the new fishery management plan due in 2015. The longer term outcome from this project is that the approach used to develop this management framework can be adapted to other similar fisheries around Australia. Using the capacity of the Australian Fisheries Management Forum, the development of fishery management frameworks and performance indicators will be provided to other jurisdictions to support fishery management improvement in other small-scale, multi-species, multi-method, community-based fisheries.

Keywords: Harvest Strategy, small-scale fisheries, Lakes and Coorong Fishery, data-poor fishery

TSGA IPA: Tassal: Innovative Seal Exclusion Technology

Project number: 2013-222
Project Status:
Completed
Budget expenditure: $313,504.40
Principal Investigator: Depha Miedecke
Organisation: Tassal Group
Project start/end date: 31 Aug 2013 - 14 Jun 2014
Contact:
FRDC

Need

Tassal is in a position where it is has become necessary to re-evaluate the measures taken for seal management and has made a commitment to zero destruction. Although relocation is used as an interim, it is recognised by all parties that this is a costly and temporary solution. Relocation carries the risk of alienating important stakeholders such as recreational and commercial fishers, who are negatively impacted by the process.

Despite the increased attention and budget dedicated to this issue, seal strikes, trappings and relocations continue to increase. Seal interactions have on numerous occasions resulted in documented and medically treated injuries and have presented, through aggressive and threatening behaviour, an unacceptable OH&S risk to marine farm employees. In order to resolve this challenging issue, a systematic co-ordinated approach is needed, with the trial and implementation of new exclusion and deterrent methods a priority.

Tassal has employed Wildlife Management Officers, whose sole responsibility is to audit and manage seal interactions, and continues to look for improved forms of exclusion technology and to gain an increased understanding of seal behaviour. As protocols dictate, Tassal works with the DPIPWE Wildlife Management Branch to evaluate new exclusion equipment.

The monofilament nets currently being used are easy for seals to breach and kikko nets have proven successful in exclusion on a small scale. It is essential that Tassal trials kikko nets in full scale commercial conditions, at high risk sites before committing to company wide implementation. Kikko nets are a significant departure from current technology and due to the expensive nature of the product, a considerable increase in overhead costs would result. Full scale trials must take place to ensure the nets are a viable investment, as there is the possibility that they will not be successful in exclusion when implemented across an entire lease.

Objectives

1. To prove kikko nets are a long term and reliable exclusion method to prevent seal interactions on its marine farms, prior to a large financial capital commitment across the company
2. To further prove the viability of in-situ net washing with the kikko technology
3. Reduce OH&S risk exposure for divers and operations staff when rigging pens
4. Identify operational functionality of the system i.e. routine operation, integrity of moorings, harvesting, net cleaning and towing
5. To evaluate the performance of kikko nets in a high energy environment
6. Measure the reduction of marine debris entering the environment
7. To disseminate the results of the project via a workshop
Industry
PROJECT NUMBER • 2013-221
PROJECT STATUS:
COMPLETED

Stock enhancement of the Western School Prawn (Metapenaeus dalli) in the Swan-Canning Estuary; evaluating recruitment limitation, environment and release strategies

Keywords: Aquaculture-based enhancement, recreational fishing, restocking, post-release survival, larval ecology, larval taxonomy, fish predation Executive Summary: This report provides the first comprehensive investigation into the biology and ecology of the Western School Prawn...
ORGANISATION:
Murdoch University

Indigenous fishing subprogram: Building the Capacity and Performance of Indigenous Fisheries

Project number: 2013-218
Project Status:
Completed
Budget expenditure: $230,000.00
Principal Investigator: Ewan A. Colquhoun
Organisation: Ridge Partners
Project start/end date: 30 Apr 2013 - 17 Jul 2016
Contact:
FRDC

Need

Wild capture fisheries are a national asset. They contribute in two ways: USE as a social, cultural or economic asset, AND value created through people and MANAGEMENT systems guiding that use. Aquaculture is an increasingly important seafood source offering potential across all sectors.

The IRG's RD&E Strategy contains 5 Aspirations, 11 Principles and related Outputs. Their comprehensive, integrated approach provides a single framework that offers a key role for all stakeholders, locally and nationally.

The IRG's Strategy will be successful only when it resolves key challenges, including:
- poor understanding and awareness of the needs of indigenous fishery users, and their monitoring of progress toward social/cultural/economic aspirations they aspire to,
- lack of capacity (human, management, structural) of fishers and communities to respond to and benefit from this Strategy,
- lack of alignment between customary sea management practices, enterprise profit motives, social/cultural/economic drivers for community viability, and government practices,
- the diversity of indigenous fisheries, across cultures, geography, aquatic environments, species and economic opportunities.

The Strategy must:
- create a viable pathway forward,
- increase fishery value in the hands of users, and
- better align government policy and process. This will require a policy and regulatory gap analysis and review options to better align these with traditional sea management approaches.

Change will take time - but outputs must demonstrate increasing value (social/cultural/economic) to fishers and communities.

The Project Team will partner with 4-5 indigenous fishery communities to consult and understand their fisheries, aspirations, needs, capacities and alignment with social/cultural/economic factors. The Team will respond with actions that aim to boost fishery value. Local case studies will inform national approaches and about what works, when and where.

The project will cost effectively create new tools, structures, alignments, data, and capacities, in the hands of the IRG, indigenous fishers and communities.

Objectives

1. Identify 4-5 Case Study fishing communities, and work with IRG and stakeholders to document aspirations and social/cultural/economic capacity, identify constraints to achieving desired community and national development outcomes, and test/trial micro development pathways.
2. Evaluate models (enterprise/management), conduct gap analyses (policy/regulatory), and synthesize and document preferred development pathways (national/regional) to enhance indigenous access to, participation in, and benefits (social/cultural/economic) from fishery development.
3. Establish and document output and extension strategies (3yr + 5yr) for the IRG (national) and each participating regional indigenous fishing community.
4. Document and report learnings (IRG + case studies), models, performance monitoring arrangements, and recommendations to the IRG that will enhance future indigenous fishery performance and community benefits

Final report

ISBN: 978-0-9871427-6-4
Author: Ewan Colquhoun
Final Report • 2018-09-21 • 6.22 MB
2013-218-DLD.pdf

Summary

This project was commissioned by the Indigenous Reference Group, an advisory committee to the FRDC for matters related to Indigenous fishery research, development and extension (R&D).
 
The project sought to build the capacity and performance of Australia’s Indigenous fisheries. It identified issues and drivers, and describes methods, means, outputs and outcomes to enhance fishery capacity and performance.
 
This report summary comprises four parts:
  1. Review of the economic framework that impacts Indigenous community and fishery development

    The starting point for the project was the IRG’s RD&E Framework for Indigenous fishery development. This framework of eleven key R&D Principles and five national and community aspirations, is grounded in a vision to enable continuous improvement, rising from Primacy to Capacity Building.

    This is the pathway to achieve sustainable increases in the capacity and performance of Indigenous fisheries, collectively and for individual communities. Indigenous communities will be the immediate and primary beneficiaries of this vision fulfilled.

  2. Issues and drivers for Indigenous fisheries
    The project has identified issues that impact the capacity and performance of Indigenous fisheries, and related drivers of uncertainty and change.
    UNLOCK THE INDIGENOUS ESTATE
    EMPLOYMENT, LEARNING AND MICROBUSINESSES
    SUSTAINABLE SEAFOOD AND TOURISM
    INDIGENOUS PARTICIPATION IN FISHERIES

  3. Conclusions regarding business models to support economic development
    Project design called for 4-5 case studies that would represent the national Indigenous community fishery cohort, meet project objectives, and inform the IRG and RD&E decision makers.
    Guided by the IRG, the project team has engaged seven case study fishery communities in face-to-face consultations regarding fishery status, capacity, performance, models, aspirations, economic development options, and analyses and reporting.

  4. Recommendations to the IRG/FRDC regarding measures and actions to build the capacity and performance of Indigenous fisheries.
The project team recommends the IRG consider the following actions:
  1. Implement a plan to identify Indigenous fishery communities across Australia that hold exclusive or non-exclusive rights to, and control of underutilised fishery resources.
  2. Encourage Indigenous fishery communities that seek to develop their fishery resources, to establish at least one community corporation registered with the Office of the Registrar of Indigenous Corporations
  3. Encourage each Indigenous fishery community (including local residents and remote TOs and members) to undertake a formal planning process
  4. Encourage community to identify commercial partners, networks and collaborations
  5. Empower Indigenous fishery community leaders to attend, contribute to and learn
Final Report • 2018-09-21 • 6.22 MB
2013-218-DLD.pdf

Summary

This project was commissioned by the Indigenous Reference Group, an advisory committee to the FRDC for matters related to Indigenous fishery research, development and extension (R&D).
 
The project sought to build the capacity and performance of Australia’s Indigenous fisheries. It identified issues and drivers, and describes methods, means, outputs and outcomes to enhance fishery capacity and performance.
 
This report summary comprises four parts:
  1. Review of the economic framework that impacts Indigenous community and fishery development

    The starting point for the project was the IRG’s RD&E Framework for Indigenous fishery development. This framework of eleven key R&D Principles and five national and community aspirations, is grounded in a vision to enable continuous improvement, rising from Primacy to Capacity Building.

    This is the pathway to achieve sustainable increases in the capacity and performance of Indigenous fisheries, collectively and for individual communities. Indigenous communities will be the immediate and primary beneficiaries of this vision fulfilled.

  2. Issues and drivers for Indigenous fisheries
    The project has identified issues that impact the capacity and performance of Indigenous fisheries, and related drivers of uncertainty and change.
    UNLOCK THE INDIGENOUS ESTATE
    EMPLOYMENT, LEARNING AND MICROBUSINESSES
    SUSTAINABLE SEAFOOD AND TOURISM
    INDIGENOUS PARTICIPATION IN FISHERIES

  3. Conclusions regarding business models to support economic development
    Project design called for 4-5 case studies that would represent the national Indigenous community fishery cohort, meet project objectives, and inform the IRG and RD&E decision makers.
    Guided by the IRG, the project team has engaged seven case study fishery communities in face-to-face consultations regarding fishery status, capacity, performance, models, aspirations, economic development options, and analyses and reporting.

  4. Recommendations to the IRG/FRDC regarding measures and actions to build the capacity and performance of Indigenous fisheries.
The project team recommends the IRG consider the following actions:
  1. Implement a plan to identify Indigenous fishery communities across Australia that hold exclusive or non-exclusive rights to, and control of underutilised fishery resources.
  2. Encourage Indigenous fishery communities that seek to develop their fishery resources, to establish at least one community corporation registered with the Office of the Registrar of Indigenous Corporations
  3. Encourage each Indigenous fishery community (including local residents and remote TOs and members) to undertake a formal planning process
  4. Encourage community to identify commercial partners, networks and collaborations
  5. Empower Indigenous fishery community leaders to attend, contribute to and learn
Final Report • 2018-09-21 • 6.22 MB
2013-218-DLD.pdf

Summary

This project was commissioned by the Indigenous Reference Group, an advisory committee to the FRDC for matters related to Indigenous fishery research, development and extension (R&D).
 
The project sought to build the capacity and performance of Australia’s Indigenous fisheries. It identified issues and drivers, and describes methods, means, outputs and outcomes to enhance fishery capacity and performance.
 
This report summary comprises four parts:
  1. Review of the economic framework that impacts Indigenous community and fishery development

    The starting point for the project was the IRG’s RD&E Framework for Indigenous fishery development. This framework of eleven key R&D Principles and five national and community aspirations, is grounded in a vision to enable continuous improvement, rising from Primacy to Capacity Building.

    This is the pathway to achieve sustainable increases in the capacity and performance of Indigenous fisheries, collectively and for individual communities. Indigenous communities will be the immediate and primary beneficiaries of this vision fulfilled.

  2. Issues and drivers for Indigenous fisheries
    The project has identified issues that impact the capacity and performance of Indigenous fisheries, and related drivers of uncertainty and change.
    UNLOCK THE INDIGENOUS ESTATE
    EMPLOYMENT, LEARNING AND MICROBUSINESSES
    SUSTAINABLE SEAFOOD AND TOURISM
    INDIGENOUS PARTICIPATION IN FISHERIES

  3. Conclusions regarding business models to support economic development
    Project design called for 4-5 case studies that would represent the national Indigenous community fishery cohort, meet project objectives, and inform the IRG and RD&E decision makers.
    Guided by the IRG, the project team has engaged seven case study fishery communities in face-to-face consultations regarding fishery status, capacity, performance, models, aspirations, economic development options, and analyses and reporting.

  4. Recommendations to the IRG/FRDC regarding measures and actions to build the capacity and performance of Indigenous fisheries.
The project team recommends the IRG consider the following actions:
  1. Implement a plan to identify Indigenous fishery communities across Australia that hold exclusive or non-exclusive rights to, and control of underutilised fishery resources.
  2. Encourage Indigenous fishery communities that seek to develop their fishery resources, to establish at least one community corporation registered with the Office of the Registrar of Indigenous Corporations
  3. Encourage each Indigenous fishery community (including local residents and remote TOs and members) to undertake a formal planning process
  4. Encourage community to identify commercial partners, networks and collaborations
  5. Empower Indigenous fishery community leaders to attend, contribute to and learn
Final Report • 2018-09-21 • 6.22 MB
2013-218-DLD.pdf

Summary

This project was commissioned by the Indigenous Reference Group, an advisory committee to the FRDC for matters related to Indigenous fishery research, development and extension (R&D).
 
The project sought to build the capacity and performance of Australia’s Indigenous fisheries. It identified issues and drivers, and describes methods, means, outputs and outcomes to enhance fishery capacity and performance.
 
This report summary comprises four parts:
  1. Review of the economic framework that impacts Indigenous community and fishery development

    The starting point for the project was the IRG’s RD&E Framework for Indigenous fishery development. This framework of eleven key R&D Principles and five national and community aspirations, is grounded in a vision to enable continuous improvement, rising from Primacy to Capacity Building.

    This is the pathway to achieve sustainable increases in the capacity and performance of Indigenous fisheries, collectively and for individual communities. Indigenous communities will be the immediate and primary beneficiaries of this vision fulfilled.

  2. Issues and drivers for Indigenous fisheries
    The project has identified issues that impact the capacity and performance of Indigenous fisheries, and related drivers of uncertainty and change.
    UNLOCK THE INDIGENOUS ESTATE
    EMPLOYMENT, LEARNING AND MICROBUSINESSES
    SUSTAINABLE SEAFOOD AND TOURISM
    INDIGENOUS PARTICIPATION IN FISHERIES

  3. Conclusions regarding business models to support economic development
    Project design called for 4-5 case studies that would represent the national Indigenous community fishery cohort, meet project objectives, and inform the IRG and RD&E decision makers.
    Guided by the IRG, the project team has engaged seven case study fishery communities in face-to-face consultations regarding fishery status, capacity, performance, models, aspirations, economic development options, and analyses and reporting.

  4. Recommendations to the IRG/FRDC regarding measures and actions to build the capacity and performance of Indigenous fisheries.
The project team recommends the IRG consider the following actions:
  1. Implement a plan to identify Indigenous fishery communities across Australia that hold exclusive or non-exclusive rights to, and control of underutilised fishery resources.
  2. Encourage Indigenous fishery communities that seek to develop their fishery resources, to establish at least one community corporation registered with the Office of the Registrar of Indigenous Corporations
  3. Encourage each Indigenous fishery community (including local residents and remote TOs and members) to undertake a formal planning process
  4. Encourage community to identify commercial partners, networks and collaborations
  5. Empower Indigenous fishery community leaders to attend, contribute to and learn
Final Report • 2018-09-21 • 6.22 MB
2013-218-DLD.pdf

Summary

This project was commissioned by the Indigenous Reference Group, an advisory committee to the FRDC for matters related to Indigenous fishery research, development and extension (R&D).
 
The project sought to build the capacity and performance of Australia’s Indigenous fisheries. It identified issues and drivers, and describes methods, means, outputs and outcomes to enhance fishery capacity and performance.
 
This report summary comprises four parts:
  1. Review of the economic framework that impacts Indigenous community and fishery development

    The starting point for the project was the IRG’s RD&E Framework for Indigenous fishery development. This framework of eleven key R&D Principles and five national and community aspirations, is grounded in a vision to enable continuous improvement, rising from Primacy to Capacity Building.

    This is the pathway to achieve sustainable increases in the capacity and performance of Indigenous fisheries, collectively and for individual communities. Indigenous communities will be the immediate and primary beneficiaries of this vision fulfilled.

  2. Issues and drivers for Indigenous fisheries
    The project has identified issues that impact the capacity and performance of Indigenous fisheries, and related drivers of uncertainty and change.
    UNLOCK THE INDIGENOUS ESTATE
    EMPLOYMENT, LEARNING AND MICROBUSINESSES
    SUSTAINABLE SEAFOOD AND TOURISM
    INDIGENOUS PARTICIPATION IN FISHERIES

  3. Conclusions regarding business models to support economic development
    Project design called for 4-5 case studies that would represent the national Indigenous community fishery cohort, meet project objectives, and inform the IRG and RD&E decision makers.
    Guided by the IRG, the project team has engaged seven case study fishery communities in face-to-face consultations regarding fishery status, capacity, performance, models, aspirations, economic development options, and analyses and reporting.

  4. Recommendations to the IRG/FRDC regarding measures and actions to build the capacity and performance of Indigenous fisheries.
The project team recommends the IRG consider the following actions:
  1. Implement a plan to identify Indigenous fishery communities across Australia that hold exclusive or non-exclusive rights to, and control of underutilised fishery resources.
  2. Encourage Indigenous fishery communities that seek to develop their fishery resources, to establish at least one community corporation registered with the Office of the Registrar of Indigenous Corporations
  3. Encourage each Indigenous fishery community (including local residents and remote TOs and members) to undertake a formal planning process
  4. Encourage community to identify commercial partners, networks and collaborations
  5. Empower Indigenous fishery community leaders to attend, contribute to and learn

Development of management recommendations to assist in advisories around seafood safety during toxic bloom events in Gippsland Lakes

Project number: 2013-217
Project Status:
Completed
Budget expenditure: $200,000.00
Principal Investigator: Vincent Pettigrove
Organisation: University of Melbourne
Project start/end date: 31 Aug 2013 - 23 Oct 2015
Contact:
FRDC

Need

In recent years there have been extensive blooms of the blue-green alga Nodularia spumigena, prompting advisories regarding the sale and consumption of fish and shellfish. In 2011-12 these advisories lasted up to 6 months in order to protect human health from consumption of contaminated seafood, and led to large economic losses to the commercial fishery and tourism in the region. The inability to accurately predict occurrence of blooms and closures before they occur, are detrimental to businesses in the region.

The increased occurrence of N. spumigena in the Gippsland Lakes has also led to increasing stress on government agencies responsible for protecting public health and providing timely, accurate information to citizens, policymakers and local businesses. Increased monitoring during blooms has significantly raised costs; with agencies under pressure to act on limited information and funding.

Black bream currently act as a sentinel species to provide early warning. However there is no information on the elimination of nodularin in this species or other key species. These are needed to provide better focus and economy to monitoring efforts. Regulatory sampling could benefit greatly if toxin elimination kinetics were known so that temporal sampling regimes could be designed and further confidence provided surrounding advisories and parts of the fish that remain marketable during blooms.

The lack of understanding of nodularin elimination and tissue distribution in fish from the Gippsland Lakes are significant stumbling blocks to the provision of management strategies to deal with seafood contamination during blooms. Clearly, there is a strong need for strategies that will enable local-, and state agencies to work together in developing early warning systems to detect and monitor seafood contamination and potential closures, which makes it possible to develop realistic mitigation strategies that minimize the risks to human health and reduce the economic impacts to government and industry.

Objectives

1. Determine uptake, elimination and tissue distribution of nodularin in commercially and recreationally relevant species under laboratory and field conditions.
2. Review current algal bloom response plan for the Gippsland Lakes and those used in monitoring programs in Australia and around the world.
3. Provide sampling and risk management recommendations, based on scientific and research findings from objectives 1 & 2, to deal with fishing closures and re-opening during bloom events.

Report

ISBN: Not provided
Author: Jackie Myers and Vincent Pettigrove
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms

Project products

Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
Report • 2018-01-01 • 5.17 MB
2013-217-DLD.pdf

Summary

Over the last 4 years, scientists from the Centre for Aquatic Pollution Identification and Management (CAPIM) have been leading a research program to better understand the risks to seafood safety during toxic cyanobacterial blooms in the Gippsland Lakes and best practices for monitoring and managing these risks. The program has successfully generated a number of recommendations to assist in providing advice around seafood safety and to deal with restrictions around harvesting during blooms not only in the Gippsland Lakes, but on a national scale
 
Based on the outcomes from the experimental research and Gippsland Lakes response plan review, a number of recommendations are provided which would assist in advisories and monitoring and management of seafood safety in the Gippsland Lakes during toxic blooms. These include:
• Develop and implement a comprehensive response plan that is based on internationally respected risk assessment principles and a scientifically sound management framework.
• Develop an appropriate cost sharing agreement so as funding will be available each year in the event of a bloom. Funding needs to be available to be deployed for sampling and toxin analysis.
• Undertake further research into uptake, tissue distribution and elimination of nodularin under field conditions in a greater number of finfish species of commercial and recreational significance to better understand risks and select an appropriate sentinel species
• Undertake further laboratory and field assessment for other toxins to fully evaluate food safety risks.
• Investigate other methods which could help in monitoring of toxins during blooms
View Filter

Species

Organisation