110 results

Aquatic Animal Health Subprogram: Development of standard methods for the production of marine molluscan cell cultures

Project number: 2015-003
Project Status:
Completed
Budget expenditure: $131,018.00
Principal Investigator: Andrew J. Read
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 30 Jun 2015 - 29 Jun 2017
Contact:
FRDC

Need

Commercial in confidence. To know more about this project please contact FRDC.

Objectives

Commercial in confidence

Aquatic Animal Health Subprogram: Bonamiasis in farmed Native Oysters (Ostrea angasi)

Project number: 2015-001
Project Status:
Completed
Budget expenditure: $380,091.21
Principal Investigator: Tracey Bradley
Organisation: Agriculture Victoria
Project start/end date: 30 Jun 2015 - 30 Aug 2017
Contact:
FRDC

Need

Bonamia ostreae and Bonamia exitiosa are significant pathogens of oysters that cause high mortality rates and substantial economic losses to the oyster farming industry globally. As such, both pathogens are listed by the OIE (the World Organisation for Animal Health). In Australia, infection by a Bonamia sp. was responsible for the devastation of experimental aquaculture of the Native Oyster Ostrea angasi and adjacent wild beds in Victoria in the early 1990s. Indeed, surveys have found Bonamia sp. in Native Oysters in Tasmania, WA, and NSW and recent monitoring of apparently healthy stock on Victorian aquaculture sites has determined that prevalence of this Bonamia sp. is high and once again is causing clinical disease. While the pathogen was identified as Bonamia sp. its relationship to the OIE-listed species, B. ostreae and B. exitiosa, is unclear. It is important to determine the identification of the Australian Bonamia to species level, to establish whether or not it is the presumed exotic species B. ostreae, B. exitiosa, or a different species endemic to Australia. Identification of the Australian species will clarify Australia’s international obligations as a member country to the OIE, with respect to reporting and international trade. Moreover, the conditions that trigger clinical disease are unknown. Identification of the risk factors associated with the onset of disease in infected oysters is needed to implement control strategies to minimise the impact on production and industry value. This information is essential for the development of improved biosecurity and farming practices that mitigate against disease caused by Bonamia and provide industry and regulators with management and control strategies.

Objectives

1. Obtain nucleic acid sequence and compare with other, described Bonamia sp. and determine their taxonomic relationship and ensure that available diagnostic tools are suitable.
2. Improve understanding of Bonamiasis infestations in Native Oysters including the determination, under controlled conditions, of the stressors that induce clinical disease in sub - clinically infected oysters.
3. Develop a biosecurity plan and farm management practices to manage the risk of infestation and the mitigation of clinical infection with Bonamia sp.

Report

ISBN: 978-1-76090-307-7
Authors: Bradley TL Mercer JA Hunnam JC Moody NJG Mohr PG Neave MJ Williams LM Crane MStJ Buss JJ4 Wiltshire KH Prowse TAA Tanner JE Harris JO and Deveney MR
Report • 2021-05-01 • 3.19 MB
2015-001-DLD.pdf

Summary

This project was a collaborative study across three research organisations: Agriculture Victoria, CSIRO (Victoria) and the South Australian Research and Development Institute (SARDI). The overall aim of this collaborative project was to better understand many aspects of infection with the parasite Bonamia exitiosa in Native Oysters (Ostrea angasi). The genesis of this project was the detection of clinical bonamiosis in farmed Native Oysters in Port Phillip Bay, Victoria in 2015. At the time the species of this parasite was unknown, and it had caused extensive mortalities (presumed over 80%) in stock on one farm.
 
CSIRO demonstrated that current diagnostic PCR assays are sufficient and effective in the detection and identification of Bonamia species from farmed O. angasi in southern Australia. The species of Bonamia parasite present in farmed O. angasi between 2013 and 2017 in Victoria, New South Wales and South Australia was confirmed to be B. exitiosa. Next generation sequencing (NGS) and bioinformatic analysis of nucleotides extracted from B. exitiosa infected and uninfected O. angasi facilitated assembly of the first draft genome of a member of the family Haplosporidiidae, B. exitiosa. For the first time a draft genome was also assembled for O. angasi as a result of the sequencing strategy undertaken to identify the B. exitiosa genome. Unexpectedly, a near complete genome was also assembled for an Epsilon proteobacterium, Poseidonibacter from O. angasi tissues infected with B. exitiosa. This organism may have been an adventitious discovery or potentially proliferated in flat oysters weakened by B. exitiosa infection.
 
In Victoria, 4 individual tank and field trials were undertaken between 2016 and 2018. All trials were designed to investigate proposed risk factors for the development of clinical bonamiosis under normal farming or controlled laboratory conditions. The tank trials utilised presumed sub-clinically infected and healthy oysters and subjected them to stressors such as heat, starvation and turbulence. Further tank trials examined oyster origin and size as risk factors. The field trials utilised existing farm sites and practices to investigate a number of proposed risk factors of interest to the farmers. The field trials were conducted on a known clinically infected farm and examined the risk factors including basket density, basket depth in the water column, oyster size and level of fouling. Concurrently, the project validated the diagnostic performance of the Bonamia sp. qPCR and established the optimal epidemiological qPCR cycle threshold (CT) value to differentiate between a positive and negative result.
 
SARDI undertook a range of trials in both the field and under laboratory conditions. Oysters were tested from 3 farms to assess diagnostic sensitivity (DSe) and specificity (DSp) of heart smears, histopathology and qPCR individually or in combination, and to assess prevalence. Tank trials were utilised to develop a cohabitation infection model using uninfected hatchery-reared recipient animals and infected donor animals from farms to better understand infection dynamics. The Pacific oyster, Crassostrea gigas, was shown to be susceptible to Bonamia exitiosa by cohabitation in the laboratory. A decontamination trial was undertaken in the laboratory using heavily infected Native Oysters to assess processes for decontaminating equipment that may have been exposed to Bonamia exitiosa. These 5 approaches were combined in a field trial where O. angasi were deployed at Cowell, Coffin Bay and Streaky Bay to examine the prevalence of B. exitiosa over time related to measured environmental parameters and growth rates. SARDI also assessed 3 different diagnostic tests for detecting Bonamia sp: heart smears, histology and qPCR. In this work the effect of combining tests to maximise overall diagnostic performance was also investigated.

Seafood CRC: Australian Seafood Industries Quantitative Genetics Analysis and Training Services 2014-15 (2014/721 Communal)

Project number: 2014-721
Project Status:
Completed
Budget expenditure: $22,281.00
Principal Investigator: Matt Cunningham
Organisation: Australian Seafood Industries Pty Ltd (ASI)
Project start/end date: 31 Oct 2014 - 29 Jun 2015
Contact:
FRDC

Need

In the long term the POMS Resistance Breeding Levy will secure the future of ASI and by extension selective breeding for Pacific Oysters. This in turn secures the investments made over many years by federal funding agencies. Due to delays achieving unanimous stakeholder support the approval for the levy has been later than anticipated but was formally adopted and implemented from October 13, 2014. As a result of this delay ASI is not in a position to enter into some key contracts in terms of provision of services for current data sets. The most pressing of these is the provision of genetic services undertaken by CSIRO.

The support from CRC for this activity will open up an training opportunity we would like to offer. There are a number of other participants in the CRC who are initiating family breeding programs or planning to initiate these programs. This project thus presents the opportunity of conducting the analysis as a training exercise for CRC participants including key stakeholders in the oyster breeding programs to improve understanding of the process and logistics of implementing family breeding program.

Objectives

1. Analysis of phenotypic data collected on YC11 and YC12 generations of ASI family lines
2. Technology transfer of breeding program methodology to SOCo
3. Workshop training for family breeding programs

Final report

ISBN: 978-0-9808007-9-1
Author: Matt Cunningham
Final Report • 2015-06-25 • 146.57 KB
2014-721-DLD.pdf

Summary

This project resulted in the genetic analysis to allow Australian Seafood Industries (ASI) to formulate a breeding plan for the 2014 breeding season.

In addition the data analysis resulted in the prioritisation of traits by industry stakeholders resulting in an agreed focus for breeding. The process resulted in training opportunities in the form of a workshop for Pacific Oyster and other industry participants to examine the requirements for managing a modern family based breeding program.

Adoption
PROJECT NUMBER • 2014-405
PROJECT STATUS:
COMPLETED

Oysters Australia IPA: Australian edible oyster RD&E investment via Oysters Australia strategic plan 2014-2019

This report describes the outcomes from a five-year Industry Partnership Agreement (IPA) between Fisheries Research and Development Corporation (FRDC) and Oysters Australia (OA). The primary objective of the IPA was to coordinate oyster R&D funded through FRDC and other sources.
ORGANISATION:
Oysters Australia Ltd

Oysters Australia IPA: Pacific Oyster Mortality Syndrome (POMS) – closing knowledge gaps to continue farming C. gigas in Australia

Project number: 2014-040
Project Status:
Completed
Budget expenditure: $463,700.00
Principal Investigator: Paul Hick
Organisation: University of Sydney (USYD)
Project start/end date: 30 Jun 2015 - 30 Jan 2018
Contact:
FRDC

Need

POMS, caused by OsHV-1, has devastated C. gigas farming in two estuaries in NSW. Australia’s other growing areas are free (survey 2011). Expert opinion is that the virus will spread, but the time frame is unpredictable; TAS and SA are at great risk. Research to find a solution to continue farming is an immediate priority to protect the ~$53M pa industry.

Farming C. gigas in the face of POMS requires improvements in both husbandry and genetics. Genetically resistant stock will not be available commercially until 2018, with partial resistance (POMS R&D Coordination Committee report).

Improved husbandry is needed at all stages of the production cycle. It is addressed by this application, which builds on research in FRDC projects 2011/053 and 2012/032 that led to breakthroughs in understanding the epidemiology of POMS: mortality can be completely prevented in hatcheries using relatively simple water treatments, and reduced by 50% in adult stock (but not juveniles) by raising the growing height. However, many growers do not have infrastructure for this.

In June 2014 industry stated it would benefit from information about consistency of seasonal infection, changes in the virus, hatchery biosecurity, and whether spat can be certified free from infection.

Growers at SAOGA August 2014 reiterated that they urgently need a strategy for juvenile grow out and rack and rail systems that can't easily be elevated.

Priorities were confirmed in a face to face meeting with TORC members on 28th August 2014. Objectives were reviewed by Oysters Australia R&D committee on 1/12/14, and modified accordingly, leading to this full application.

This project fits within the FRDC 2015 Environment Priority 5: development of robust methodologies for investigation of mollusk disease outbreaks; integrated health management for commercial molluscs, which flow from priorities of the Aquatic Animal Health Subprogram.

Objectives

1. To determine methods for the conditioning/husbandry of spat and juvenile oysters to obtain survival after exposure to OsHV-1 based on improved scientific understanding of exposure, pathogenesis, immunity, tolerance or latency
2. To confirm i) the consistency of seasonal patterns of POMS, ii) the periodicity of infection within season, iii) inter-estuary temperature variation, and iv) predict POMS seasonal behaviour.
3. To identify changes in OsHV-1 DNA sequence over time (2010-2016) to understand infection and disease patterns
4. To investigate the mechanisms of survival of Pacific oysters after exposure to OsHV-1, including assessment of exposure dose and using biosensors
5. To determine whether water treatments prevent OsHV-1 infection of spat or merely prevent mortality, and whether they can be applied for biosecurity of hatchery effluent
6. To describe an integrated disease control strategy based on complementary use of genetically resistant oysters (when available) and husbandry methods throughout the production cycle: hatchery-juvenile-growout to market
7. To build capacity in aquatic animal health for Australian industry through training a post graduate student

Final report

ISBN: 978-1-74210-445-4
Authors: Paul Hick Richard Whittington Olivia Evans Navneet Dhand Ana Rubio
Final Report • 2019-06-01 • 6.04 MB
2014-040-DLD.pdf

Summary

The present project is part of a continued program of epidemiologic investigations of OsHV-1 in Australia. Sufficient understanding of POMS is required to provide information for farmers and to direct policy so that profitable farming can continue despite increasing distribution and devastating impacts of OsHV-1. Observational studies of outbreaks have again identified risk factors for mortality that have been followed up with controlled experiments to determine how these can be exploited by farmers to minimise disease impacts. The present research provides a firmer understanding of the risk factors for disease through sentinel oyster surveillance and a combination of controlled field and laboratory experiments. Although a largely unpredictable disease some key risk factors are highlighted and predictions of the temporal and geographic distribution of OsHV1transmission has enabled successful window farming. The water temperature proxy for POMS risk enables modelling of the impact of OsHV-1 if the distribution continues to expand. The highly clustered nature of the disease on fine and larger geographic and temporal scales is illustrated in this research. The highly specialised nature of OsHV- transmission inferred is the key to better prediction of the disease in farming and continued research. Further work is required to understand the host factors that impact disease severity, particularly the role of prior exposure and the physiologic and metabolic status at the time of challenge. An insight into variation in genotype and phenotype of OsHV-1 isolates reinforces the need to consider the pathogen in predicting disease outcomes. Less virulent strains of OsHV-1 might lead naturally to reduced disease impacts in the future. 

Improved understanding of Tasmanian harmful algal blooms and biotoxin events to support seafood risk management

Project number: 2014-032
Project Status:
Completed
Budget expenditure: $600,000.00
Principal Investigator: Gustaaf Hallegraeff
Organisation: University of Tasmania (UTAS)
Project start/end date: 31 Jul 2014 - 31 Dec 2017
Contact:
FRDC

Need

The 2012 Tasmanian biotoxin event represents a paradigm shift for seafood risk management in Tasmania and Australia as a whole. The causative dinoflagellates are extremely difficult to identify by routine plankton monitoring, and are toxic at very low cell concentrations (50-100 cells/L) . Sampling the extensive Tasmanian coast line poses a major logistical challenge, with early hints that the blooms originate offshore. The precise pathway of toxin transfer to rock lobster is unclear. The presence of cyst beds suggest that problems will persist .

Objectives

1. Develop, test and calibrate screening techniques for rapid detection and evaluation of toxins
2. Elucidate genetic population structure and biology (inshore or offshore origin) of toxic Alexandrium tamarense- group algae using state-of-the art molecular and biotoxin screening techniques
3. Integrate existing Tasmanian east coast oceanographic modeling with field bloom biology data to enable seasonal and spatial (risk zone) prediction during biotoxin event development.
4. Establish the relative risk of Tasmanian seafood species to accumulate marine biotoxins to underpin a state-wide approach to biotoxin risk management.

Final report

ISBN: 978-1-925646-08-5
Authors: Gustaaf Hallegraeff Chris Bolch Katrina Campbell Scott Condie Juan Dorantes-Aranda Shauna Murray Alison Turnbull Sarah Ugalde
Final Report • 2018-02-28 • 18.01 MB
2014-032-DLD.pdf

Summary

The 2012 Tasmanian biotoxin event represents a paradigm shift for seafood risk management in Tasmania and Australia as a whole. The causative dinoflagellates are extremely difficult to identify by routine plankton monitoring, and are toxic at very low cell concentrations (50-100 cells/L). Sampling the extensive Tasmanian coast line poses a major logistical challenge. This project sought to improve the understanding of Tasmanian harmful algal bloom biology, ecology and toxicology to support seafood biotoxin risk management.

Industry

Survey of Foodborne Viruses in Australian Oysters

Project number: 2013-234
Project Status:
Completed
Budget expenditure: $260,800.00
Principal Investigator: Valeria Torok
Organisation: SARDI Food Safety and Innovation
Project start/end date: 23 Feb 2014 - 22 Oct 2015
Contact:
FRDC

Need

Norovirus (NoV) is the leading cause of gastroenteritis outbreaks worldwide, and is commonly associated with shellfish. Between 2001-2010 seventeen Australian cases of suspected shellfish related NoV outbreaks were reported in OzFoodNet (Knope, 2011). More recently (March 2013) 400 people were reportedly affected by NoV following consumption of contaminated oysters from Tasmania.
Virus contamination in food poses major concerns for consumers and can impact export trade. The WHO/FAO working group (2008) on food-borne viruses, and European Food Safety Authority’s (EFSA) opinion (2011) ranked bivalves among the highest risk food groups in terms of NoV and hepatitis A virus (HAV). In 2011 the Codex Committee on Food Hygiene ratified a draft guideline on viruses in foods, with a specific annex on bivalves. It recommends that countries monitor for NoV and HAV in bivalves following high risk pollution events. Additionally, in early 2012 EFSA recommended the introduction of an acceptable NoV limit in oysters and the EU Community Reference Laboratory (2012) recommended an ‘absence’ criterion be applied for HAV in bivalves. Because of these impending international regulations (noting that some importing nations already require NoV testing), the Australian oyster industry members have indicated that they would like a more comprehensive evaluation of the prevalence of viruses in Australian oysters. There is little information on the baseline levels of NoV in Australian oysters. Although, a small pilot survey in oysters was conducted in production areas, more information is needed.
Recent developments made at SARDI in the use of molecular biology techniques for virus detection in foods would enable the occurrence of these viruses in bivalves to be determined through a virus prevalence survey. Similar surveys have been undertaken worldwide, including in the USA, UK, France and China, and might contribute to the development of market access strategies at the international level.

Objectives

1. 1 To design a statistically robust survey to evaluate virus occurrence in oyster growing areas in NSW, Qld, SA and Tas
2. 2 To identify the prevalence of NoV and HAV associated with Australian oysters at harvest
3. 3 To use the survey results to support trade and market access of Australian oysters

Seafood CRC: visiting Expert: Dr Standish Allen - enhancement of tetraploid and triploid production in the Australian Pacific Oyster industry

Project number: 2012-728
Project Status:
Completed
Budget expenditure: $14,200.00
Principal Investigator: Scott Parkinson
Organisation: Shellfish Culture Ltd
Project start/end date: 30 Jun 2012 - 1 Mar 2013
Contact:
FRDC

Need

SCL’s overall goal with regard to tetraploid technology is to make it work as effectively as anywhere in the world. In some ways, SCL is ahead of the game already, with dedicated facilities and technicians to pursue this goal. The objective of this Visiting Expert project is to get SCL fully on this path and to continue the improvement of tetraploid technology in Australia, and by example, the world.

There is currently only a hand full of commercial operations producing natural triploids and even fewer assessing breeding technologies required to enhance the breeding of tetraploid populations.

At SCL, commercial production of natural triploid oysters in Australia has been successful for a number of years. The regeneration of tetraploids through large mass populations of tetraploids are accomplished each year by SCL research staff. We also have the know-how for the production of both natural mass spawning of tetraploids and chemical induction of tetraploids.

The opportunity exists to enhance our tetraploid lines through the infusion of genetics from the industry owned breeding program (Australian Seafood Industries). This request from industry is based on the following two, and likely very distinct, traits.
1. Specific resistance to OsHV-1 µVar
2. Increase fitness in general oyster populations to combat mortalities in South Australia or Tasmania probably due to the high metabolism of triploids in food poor waters.

Objectives

1. Evaluating tetraploid spawns, including single pair crosses, mass spawns, and/ or mass selected spawnings, for the development of breeding lines and long term breeding objectives
2. Production of a range of ASI triploids lines for progeny testing, both natural and chemical
3. Assessing the commercial application of producing selectively bred tetraploids utilising a method described by McCombie et al. 2009
4. Expert input to Penny Miller PhD with detail analysis of results to meet project objectives
5. Collaborate with CSIRO in the future enhancement of breeding plans for tetraploid pacific oysters using selectively bred lines from the ASI breeding program
6. Develop a long-term breeding and tetraploid maintenance plan to secure supplies of high quality tetraploids long into the future

Final report

ISBN: 978-1-925982-78-7
Authors: Standish K. Allen Jr.
Final Report • 2013-03-02 • 301.57 KB
2012-728-DLD.pdf

Summary

The overall goal for shellfish culture limited (SCL) is to make tetraploid technology work as effectively as anywhere in the world. In many ways, SCL is ahead of the game, with dedicated facilities and technicians to pursue this goal. There is currently only a hand full of commercial operations producing natural triploids and even fewer assessing breeding technologies required to enhance the breeding of tetraploid populations.

The breeding of specific tetraploid lines is a new challenge filled with a number of, as yet, answered questions about the biology and genetics of tetraploids. Long term breeding objectives will require answers to these questions and this Visiting Expert project aims to initiate some of this work and set a course for future work for SCL, CSIRO and VIMS, and train SCL staff.

Aquatic Animal Health Subprogram: development of a laboratory model for infectious challenge of Pacific oysters (Crassostrea gigas) with ostreid herpesvirus type-1

Project number: 2012-052
Project Status:
Completed
Budget expenditure: $134,990.00
Principal Investigator: Peter D. Kirkland
Organisation: Department of Primary Industries and Regional Development (NSW)
Project start/end date: 19 Dec 2012 - 29 Jun 2014
Contact:
FRDC

Need

The need for further information to assist with the response to OsHV-1 is universally acknowledged by the aquaculture industry broadly, government agencies charged with biosecurity and aquatic animal health scientists in Australia and internationally.
Access to a standardised, reproducible and transferable laboratory infection model is critical to ongoing research efforts. Such a model provides a precise method of testing the effect of factors which are suspected to influence the outcome of an infectious challenge with OsHV-1 on Pacific oysters. The most promising factor for enabling continuation of Pacific oyster production despite the threat of OsHV-1 infection is the identification of genetic variation in susceptibility to POMS. The demand for efficient progress in selective breeding programmes requires a laboratory infection model which is suitable for screening large numbers of candidate families and provides results which can be reliably interpreted.

Objectives

1. Production and long-term storage of large quantities of a standard OsHV-1 inoculum
2. Evaluation of methods to provide a standard, measured OsHV-1 infection challenge
3. Definition of the outcomes of infectious challenge including mortality, development of histopathological lesions and quantities of OsHV-1 present in tissues
4. Determination of the dose-response under standardised challenge conditions, including variation due to the age of the oysters
5. Determination of the repeatability, reproducibility and transferability of the standard infection challenge
6. Assessment of the susceptibility of flat oysters (spat and adult) to OsHV-1 infection.

Aquatic Animal Health Subprogram: Pacific oyster mortality syndrome (POMS) - risk mitigation, epidemiology and OsHV-1 biology

Project number: 2012-032
Project Status:
Completed
Budget expenditure: $783,045.00
Principal Investigator: Richard Whittington
Organisation: University of Sydney (USYD)
Project start/end date: 18 Jun 2012 - 6 Sep 2015
Contact:
FRDC

Need

There is a disturbing pattern of diseases in commercial molluscs nationally. They have required a succession of government/industry responses, with no clear solutions:QX disease, Sydney rock oysters, NSW and QLD; NSW; Pacific oyster mortality syndrome, NSW; Abalone viral ganglioneuritis, VIC; Oyster oedema disease, pearl oysters, WA; Winter mortality, Sydney rock oyster, NSW.

Economic impacts have been substantial or devastating. Wild fisheries and aquaculture have been impacted. In NSW, the primary impact of QX disease led to replacement of Sydney rock oysters by triploid Pacific oysters to reestablish the industry in some estuaries, but this is now threatened by POMS.

In every case the new disease has spread. It has not been possible to devise an intervention strategy that would halt disease spread or ensure the recovery of the industry. Investigating the behaviour of POMS during its recrudescence in summer 2011/2012 in FRDC project 2011-053 afforded a unique insight into the disease, and these observations need to be extended over time to identify factors which may be used to reduce the impact of the infection.

This project seeks to address 6 specific research priorities identified by FRDC and will concurrently investigate the effect of host, environment and husbandry factors on POMS prevalence and mortality rate in Pacific oysters with the objective of discovering aspects of epidemiology which can be manipulated by oyster growers. If POMS spreads beyond its current limited distribution in NSW, commercial scale production of Pacific oysters in the face of POMS will be essential for the viability of the industry pending development of technical solutions such as genetically resistant lines.

FRDC strategic R&D theme 1 - biosecurity and aquatic animal health, and Aquatic Animal Health Subprogram priority - Nature of disease and host-pathogen interaction - immunology of aquatic invertebrates.

Objectives

1. To determine/confirm the identity of the one or more variant(s) of Ostreid herpesvirus associated with the recent outbreaks of POMS
2. To determine the mechanism(s) of transmission of disease
3. To determine the major risk factors that contribute to precipitation of disease outbreaks thereby identifying potential risk-mitigation management practices
4. To identify the natural reservoir(s) for the virus
5. To determine the stability of the virus in the environment
6. To identify physical and chemical means for viral inactivation
7. To develop an infecitivity model for POMS suitable for selection of resistant oysters and pathogenesis/environmental research
8. To address future shortages of technical expertise through the training and supervision of at least 1 PhD student

Project products

Journal • 2013-12-17

Summary

Abstract:

Mortality of farmed triploid Pacific oysters (Crassostrea gigas) associated with Ostreid herpesvirus-1 (OsHV-1) was first recorded in Australia in the Georges River/Botany Bay estuary (New South Wales) in late 2010. Two years later, the first sign of possible inter-estuarine spread was observed when commercial triploid Pacific oysters in the Hawkesbury River estuary, located 50 km north of Botany Bay, were affected by mass mortality.

Journal • 2015-03-09

Summary

Abstract:

In Australia, the spread of the ostreid herpesvirus-1 microvariant (OsHV-1 μVar) threatens the Pacific oyster industry. There is an urgent need to develop an experimental infection model in order to study the pathogenesis of the virus under controlled laboratory conditions. The present study constitutes the first attempt to use archived frozen oysters as a source of inoculum, based on the Australian OsHV-1μVar strain.

Journal • 2014-11-21

Summary

Abstract:

 

The microvariant genotype of Ostreid herpesvirus-1 (OsHV-1 μVar) has severely disrupted the production of Pacific oysters Crassostrea gigas in Europe, New Zealand, and Australia since its first detection in France in 2008. The disease occurs in the warmer months, recurs annually, and requires new management strategies. Larvae and spat are the most susceptible life history stages, which poses a threat to hatchery production.

 

Journal • 2015-01-06

Summary

Abstract:

Management of mass mortality events associated with Ostreid herpesvirus-1 microvariant (OsHV-1 μVar) is vital for aquaculture of Crassostrea gigas. As a consequence, the understanding of transmission mechanisms and risk factors enabling husbandry solutions to be developed constitutes an international research priority. In this context, a longitudinal intervention study was set up in Woolooware Bay, Australia, during summer in 2012–2013.

Journal • 2013-07-29

Summary

Abstract:

In 2010 Ostreid herpesvirus-1 (OsHV-1) was detected in Australia and had a disastrous impact on Pacific oyster Crassostrea gigas aquaculture and coastal communities. The acronym POMS (Pacific Oyster Mortality Syndrome) was created in Australia to refer to mass mortalities due to OsHV-1. While management of this disease mainly involves active surveillance, rigorous biosecurity protocols and mollusc breeding  programs targeting production of resistant animals, the effects of aquaculture practices on mortality outbreaks are still poorly understood. The present study aimed to determine the effect of growing heights on OsHV-1 associated mortality in C. gigas in Woolooware Bay (Australia) during the summer 2011/2012.

Journal • 2014-10-05

Summary

Abstract:

Ostreid herpesvirus-1 (OsHV-1) is responsible for massive mortality events in commercially farmed Pacific oysters (Crassostrea gigas) in Australia, New Zealand, Europe and the USA. Economic losses have been severe in many countries since 2008, associated with a strain known as OsHV-1µ-var. Despite intensive studies of the virus itself, there is almost no information on its detection in natural seawater, how it is spread over wide geographic distance in water or on how it is transmitted from oyster to oyster via seawater.

INFORMD Stage 2: Risk-based tools supporting consultation, planning and adaptive management for aquaculture and other multiple-uses of the coastal waters of southern Tasmania

Project number: 2012-024
Project Status:
Completed
Budget expenditure: $750,000.00
Principal Investigator: Scott A. Condie
Organisation: CSIRO Oceans and Atmosphere Hobart
Project start/end date: 26 Aug 2012 - 7 Jul 2016
Contact:
FRDC

Need

A range of human activities influence water quality and other marine environmental values in southern Tasmania. For example, cage based salmon farming is currently restricted to the Huon Estuary, D’Entrecasteaux Channel and Tasman Peninsula, with other activities in these waters having the potential to be affected by, or have an effect on, aquaculture (e.g. industrial processes, urban development, municipal services, fisheries, recreation, tourism). Given the multi-user nature of the marine environment, it is important to recognise the diverse needs and expectations of the broader community when identifying values and evaluating trade-offs in the system as a whole. For example, water quality issues such as eutrophication and nuisance algae are important to both the aquaculture industry and the wider community, while issues such as public access, views and maintenance of recreational assets may be of particular concern to local communities. There is an urgent need to develop and apply innovative tools based on the best available scientific knowledge (e.g. INFORMD) to support consultation, planning and management of aquaculture and other uses of southern Tasmanian coastal waters.

Objectives

1. For the marine environment of southern Tasmania, characterise key environmental, social and economic values and aspirations from industry, government and community perspectives.
2. Relate these values to measurable indicators based on understanding of key biophysical and socio-economic processes.
3. Develop a framework to support spatial risk assessment for planning of future development within the system, with an initial focus on aquaculture leases.
4. Develop a framework for evaluating spatial risk management strategies, with an initial focus on managing aquaculture leases.
5. Integrate the planning framework (objective 3) and risk management framework (objective 4) into an online tool accessible to key stakeholders.

Final report

ISBN: 978-1-4863-0842-2
Author: Scott Condie

Marine Discovery Centres Australia annual network meeting

Project number: 2011-401
Project Status:
Completed
Budget expenditure: $54,000.00
Principal Investigator: Michael Burke
Organisation: Marine Discovery Centre Maclean
Project start/end date: 3 Jul 2011 - 30 Jun 2015
Contact:
FRDC

Need

MDCA needs support to assist agencies such as FRDC to deliver key messages to the wider community and industry partners. Other organisations such as OceanWatch Australia, SeaNet, RedMap and a number of universities will also benefit. MDCA is seeking funding to enable 2 representatives from each Centre to cover costs associated with an annual network meeting. Each Centre hosts the annual event at their Centre, in a diverse range of marine bioregions around Australia.

Julie Haldane from FRDC has attended a number of network meetings and Peter Horvat attended the meeting in Queenscliff in 2009.

This application also addresses the following priority questions in the National Climate Change Adaptation Research Plan: Marine Biodiversity and Resources:

1. Aquaculture: many Centres are located in areas supporting aquaculture industries. We are a link with these industries direct to FRDC and provide information to assist them to adapt to climate change impacts.
2. Commercial and Recreational Fishing: Some Centres work closely with industry representatives in community based research projects. The Centres are a central contact point for industry and community members to access data and research results that may address key issues for their specific adaptation needs.
3. Conservation Management: Marine Discovery Centres are well-placed to deliver up-to-date educational material about the changes occuring in the marine and coastal environment.
4. Tourism and recreational needs: As above, MDCs are considered by the tourism industry as a link to important information about the impacts of climate change, both on capital assets as well as the environments in which they operate. All MDCs are located in key coastal regions and are a respected source of key information.
5. Cross-cutting issues: MDCs are central points that link research institutions, Govt agencies, industry and local communities to deliver important adaptation messages.

Objectives

1. To enable representatives from Marine Discovery Centres across Australia to meet in different marine regions at an annual workshop to share new ideas, educational resources and materials.
2. To identify new resources that will enable MDCs to disseminate essential up-to-date information about adaptation to the impacts of climate change.
3. To provide a vital link of information between industry, FRDC and the wider community.

Final report

Author: Michael Burke
Final Report • 2017-10-02 • 505.19 KB
2011-401-DLD.pdf

Summary

 Marine Discovery Centres Australia (MDCA) is a network of marine education facilities across Australia that provides high quality education and engagement experiences for the wider community. These learning experiences promote sustainable behaviour in, and stewardship of, our fisheries and aquatic natural resources. Through annual meetings held around Australia, MDCA members were able to gain greater knowledge and understanding of issues affecting our aquatic natural resources and then share this with the Australian community

Aquatic Animal Health Subprogram: Pacific oyster mortality syndrome (POMS) - understanding biotic and abiotic environmental and husbandry effects to reduce economic losses

Project number: 2011-053
Project Status:
Completed
Budget expenditure: $130,000.00
Principal Investigator: Richard Whittington
Organisation: University of Sydney (USYD)
Project start/end date: 31 Oct 2011 - 16 Dec 2012
Contact:
FRDC

Need

There is a disturbing pattern of diseases in commercial molluscs nationally. They have required a succession of government/industry responses, with no clear solutions:QX disease, Sydney rock oysters, NSW and QLD; NSW; Pacific oyster mortality syndrome, NSW; Abalone viral ganglioneuritis, VIC; Oyster oedema disease, pearl oysters, WA; Winter mortality, Sydney rock oyster, NSW.

Economic impacts have been substantial or devastating. Wild fisheries and aquaculture have been impacted. In NSW, the primary impact of QX disease led to replacement of Sydney rock oysters by triploid Pacific oysters to reestablish the industry in some estuaries, but this is now threatened by POMS.

In every case the new disease has spread. It has not been possible to devise an intervention strategy that would halt disease spread or ensure the recovery of the industry. Investigating the behaviour of POMS during its predicted recrudescence this summer provides an opportunity to identify factors which may be used to reduce the impact of the infection.

This project seeks to investigate the effect of host, environmental and husbandry factors on POMS prevalence and mortality rate in Pacific oysters during summer 2011-autumn 2012 with the objective of discovering aspects of epidemiology which can be manipulated by oyster growers.

FRDC strategic R&D theme 1 - biosecurity and aquatic animal health, and Aquatic Animal Health Subprogram priority - Nature of disease and host-pathogen interaction - immunology of aquatic invertebrates.

Objectives

1. To correlate biotic and abiotic environmental factors with POMS occurrence in selected oyster populations

Final report

ISBN: 978-1-74210-309-9
Author: Richard Whittington

Aquatic Animal Health Subprogram: understanding and planning for the potential impacts of OsHV1 u Var on the Australian Pacific oyster industry

Project number: 2011-043
Project Status:
Completed
Budget expenditure: $90,000.00
Principal Investigator: Tom Lewis
Organisation: RDS Partners Pty Ltd
Project start/end date: 26 Jul 2011 - 30 Jul 2012
Contact:
FRDC

Need

The Pacific oyster virus (Ostreid Herpesvirus-1, OsHV-1) is a pathogen that has been regularly detected in France since 1991. The virus has generally been associated with Pacific oyster larval mortality in hatcheries and in Pacific oyster spat mortality outbreaks.

The recent incursion of the highly pathogenic OHsV-1 micro variant into New Zealand and NSW waters, leading to 80-100% mortality in weeks, has raised the very real prospect of this deadly oyster virus spreading to other Pacific oyster growing states.

This virus, if spread unchecked in Australia, has the potential to destroy the Pacific oyster aquaculture industry, which is currently worth about $65million in farm gate sales in SA, Tas and NSW.

There is an urgent need to collate and disseminate information regarding the source, transmission, pathogenicity, control and mitigation of this virus and its effects on farmed Pacific oysters.

This project has been developed to provide a considered response to that need.

Objectives

1. A desktop study on industry relevant issues associated with OsHV1 and the related Pacific Oyster Mortality Syndrome (POMS)
2. A field visit by a small group to France to engage their industry and to discuss first hand industry experience regarding the effects and management of OsHV1
3. The development and extension of a national strategy to control and/or minimise the spread of OsHV1 in Australia and to develop management strategies to mitigate the effects of the disease in areas in which is, or may become, established
Industry
PROJECT NUMBER • 2010-747
PROJECT STATUS:
COMPLETED

Seafood CRC: National oyster R & D – strategic R & D project commissioning, management and path to commercialization

The formation of The Oyster Consortium Ltd and its evolution into Oysters Australia Ltd (OA) was the culmination of a seven year process of increased cooperation and improved social interaction among Australia’s oyster farmers. In 2010, the Oyster Consortium was engaged in 50 projects...
ORGANISATION:
Oysters Australia Ltd

Seafood CRC: oyster over-catch: cold shock treatment

Project number: 2010-734
Project Status:
Completed
Budget expenditure: $71,000.00
Principal Investigator: Bob Cox
Organisation: Tasmanian Oyster Research Council Ltd
Project start/end date: 31 Aug 2010 - 29 Dec 2010
Contact:
FRDC

Need

"Over-catch" (fouling) and pest species (oysters, barnacles, sea squirts, flatworms, mudworm) cost the Australian oyster industry an inestimable sum each year in grading and handling labour, product loss and reduced price due to unmarketable product. The pests are regionally specific, the issue is common across all growing areas and in all cases is a major financial burden. In NSW overcatch is currently treated through labour expensive heat treatment and stock management. The cost effectiveness of the alternate proposed treatment froms part of this proposal.

For example, oyster overcatch is one of the primary deterrents to interstate investment into Port Stephens, NSW which previously was a highly productive single species estuary. It is estimated that NSW production would be increased by 12.5% (GVP of almost $5m) through Marine Culture's use of a successful overcatch treatment in Port Stephens alone. Marine Culture propose to farm an output of 750,000 dozen Pacific Oysters off the area.

This project expands investigative research by NSW I&I (Heasman 2005) in which experimental, small scale cold shock trails “resulted in the death of advanced rock oyster over-catch in as little 5 seconds and complete mortality after exposure periods of 60 seconds and above. By contrast, no deaths nor discernable negative effects on the health and flesh condition of host Pacific oysters were detected for cold shock durations of up to 2 minutes”.

The project will include a more comprehensive range of oysters sizes and types, and fouling organisms. Further, and critically, the method needs to be assessed on a large scale under commercial operating environments to demonstrate practicality and cost effectiveness.

Objectives

1. Increased Australian oyster production and value
2. Enhanced oyster farming efficiencies and cost effectiveness
3. Make available relevant cold tolerance parameters for oyster, key fouling and pest species to the industry for uptake

Final report

Authors: Bob Cox Peter Kosmeyer Wayne O’Connor Michael Dove Kyle Johnstone
Final Report • 2012-06-01 • 2.94 MB
2010-734-DLD.pdf

Summary

The recruitment of fouling or pest organisms to cultured oysters and growing infrastructure imposes a major financial impost for oyster culture throughout Australia and serves as a particular deterrent to industry expansion in certain regions. Oyster farmers have a range of management options such as mechanical cleaning, drying or cooking to control fouling, but each option typically has its limitations. Cold-shock, through immersion in chilled (-12 to -16°C) hypersaline (180 - 200 g l-1 NaCl) baths, is a comparatively new technique that has demonstrated the potential to effectively control a range of pest species without adverse effect on the host oysters. Most notably, hypersaline cold-shock can be used to control subsequent natural oyster settlement known as “over-catch”.

A commercial scale, hypersaline, cold-shock bath, dubbed the “Super Salty Slush Puppy” was constructed to provide proof of concept of cold shock treatment for over-catch control. The cold shock bath was deployed to Port Stephens NSW where it was successfully used for both experimental and commercial scale biofouling treatment. In experimental scale laboratory trials, the cold tolerances of various size classes of both Sydney Rock Oysters (Saccostrea glomerata), Pacific Oysters (Crassostrea gigas) were assessed and tolerance estimates were determined. Overall cold shock tolerance in both species was size-dependent with smaller individuals succumbing faster. Comparatively, S. glomerata of up to commercial size were less tolerant of hypersaline cold-shock than C. gigas. Operating guidelines for cold shock treatment were developed - a period of 75 seconds immersion revealed 100% destruction of fouling over-catch oysters with no detrimental effects on the stock oysters. The effectiveness of cold shock in treating a range of additional pest species (barnacles, hairy mussels, flatworms etc) was confirmed. Cold-shock was found to be particularly destructive to “soft-bodied” pests such as flat worms and smaller organisms such as barnacles.

Based upon simple assumptions, the operating cost of treatment is $1,215 per 100,000 of 60 to 80 mm [top shell measurement] oysters, or, put another way, a cost of $4,200 for 345,600 sale size oysters with a $1m sale value. Even when capital costs are included, and assuming that other mitigation measures see the equipment used only once every four years, the cost per dozen for treatment works out at 3.4 cents per dozen.

Tactical Research Fund: Developing a dynamic regional brand - focus on flavour

Project number: 2010-228
Project Status:
Completed
Budget expenditure: $74,923.00
Principal Investigator: Heather Smyth
Organisation: University of Queensland (UQ)
Project start/end date: 31 Jul 2011 - 31 Jan 2013
Contact:
FRDC

Need

The Eyre Peninsula seafood industry formed Brand Eyre Peninsula in 2006, a collaborative market development program aimed to increase sales and market position in the domestic and export market. Integral to the brand is the education of the species’ attributes to all key stakeholders of the value chain including seafood wholesalers, retailers, food service and media. The results of market development initiatives have been communicated to the owner, head buyer or executive chef of businesses, however, the program failed to support training for key staff such as restaurant front of house and retail counter staff. There is a need for a simple, cost effective training tool due to the high turnover of these positions.

Australian and export clients have consistently requested a “Seafood Flavour Wheel” to assist in menu planning and tasting notes for chefs and sommeliers. Once developed, this tool would be distributed to an initial 500 existing clients to support immediate industry and consumer education. The development of the “Seafood Flavour Wheel” has an extensive level of support from its current client base.

The proposed “Seafood Flavour Wheel” will be a training guide benchmark and has the potential to expand to an Australian guide, inclusive of all seafood species. Specifically, the development of the Eyre Peninsula “Seafood Flavour Wheel” will assist the lack of knowledge and appreciation for the flavours of a target group of seafood species specific to that region.

Equipped with this knowledge, a united industry marketing approach will effectively connect customers with an experience of the unique regional flavour qualities of Eyre Peninsula’s premium seafood. Through this experience, customers will learn to recognise the sensory attributes of Eyre Peninsula seafood and distinguish these products from those originating from other Australian and international regions.

Objectives

1. To develop a set of accurate and informative educational tools delivering against trade requirements
2. To establish the basis of a uniform and coordinated educational program that features a target list of seafood species available on the Eyre Peninsula including Southern Bluefin Tuna, Mussels, Pacific Oysters, Spencer Gulf Prawns, Yellowtail Kingfish, Sardines, Suzuki Mulloway, Marinescale, Abalone, Deep Sea Trawlfish and niche seafoods
3. To capture highly synchronised technical and creative communications

Seafood CRC: overseas market access for shellfish

Project number: 2009-752
Project Status:
Completed
Budget expenditure: $5,000.98
Principal Investigator: Catherine McLeod
Organisation: SARDI Food Safety and Innovation
Project start/end date: 31 Aug 2009 - 30 Nov 2009
Contact:
FRDC

Need

The potential reduction of regulatory thresholds for marine biotoxins in the EU will have significant negative economic consequences for the Australian oyster, mussel, scallop and abalone industries (and pipi’s if domestic regulatory thresholds also changed).

The scallop, oyster and mussel industry currently export product to the EU. Total scallop exports to the EU in 2006/2007 were valued at around $4,551,000 AUD (187 t). Other mollusc (including oysters and mussels) exports to the EU in 2006/2007 were around $1,084,000 AUD (255 t). Due to the periodic occurrence of okadaic acid toxins and saxitoxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for export to the EU.

Exports of Australian abalone to the EU ceased in 2007, this was in part due to the enforcement of marine biotoxin regulatory limits by the EC. The wild caught abalone industry is attempting to regain market access to the EU through determining alternate risk management procedures for marine biotoxins in abalone. The reduction of regulatory levels for marine biotoxins may impinge on future EU access arrangements for Australian abalone.

Experience has repeatedly demonstrated that European decisions can impact on other more commercially significant markets, including Asia and the domestic market. Codex may also be prompted to change marine biotoxin guidance levels in response to EU changes. Wide spread adoption of reduced regulatory levels for marine biotoxins would result in increased growing area closures in Australia and less product eligible for sale. This proposal aims to assist in maintaining the current EU regulatory limits for marine biotoxins which will allow the current amount of shellfish to be exported to the EU and avoid other markets being influenced.

Objectives

1. Undertake robust technical review of the European Food Safety Authority risk assessments on saxitoxin and okadaic acid group toxins.
2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the European Commission.
3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.

Final report

ISBN: 978-0-9756044-8-9
Authors: Dr Catherine McLeod Dr John Sumner Dr Andreas Kiermeier
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.
Final Report • 2011-02-24 • 1.18 MB
2009-752-DLD.pdf

Summary

The oyster, scallop and mussel industries currently export product to the EU. Due to the periodic occurrence of Okadaic Acid (OA) and Saxitoxin (STX) group toxins in Australian shellfish the implementation of reduced regulatory levels would reduce the amount of product eligible for EU export. Exports of Australian abalone to the EU ceased in 2007, due in part to the enforcement of marine biotoxin regulatory limits set by the EC. The wild caught abalone industry is attempting to regain EU market access through determining alternate risk management procedures for marine biotoxins in abalone.

The European Commission (EC) requested the European Food Safety Authority (EFSA) to assess the current European Union (EU) limits for shellfish regarding human health and methods of analysis for various marine biotoxins, including newly emerging toxins. A critical recommendation of the ‘EFSA Opinions’ is that the regulatory limits should be significantly lower (more stringent) for both OA and STX.

The objectives of this study were to:

  1. Undertake a robust technical review of the EFSA risk assessments on STX and OA group toxins.
  2. Submit the technical review and a rationale for maintaining current marine biotoxin regulatory limits to the EC.
  3. Convene a working group to determine future steps required to mitigate potential lowering of marine biotoxin regulatory limits.

Seafood CRC: Incorporation of selection for reproductive condition, marketability and survival into a breeding strategy for Sydney rock oysters and Pacific oysters

Project number: 2009-743
Project Status:
Completed
Budget expenditure: $697,045.29
Principal Investigator: Matt Cunningham
Organisation: Australian Seafood Industries Pty Ltd (ASI)
Project start/end date: 31 Jan 2009 - 30 Jul 2013
Contact:
FRDC

Need

The oyster industries now require breeding programs to focus on quality and market appeal, to increase competitiveness alongside imported and alternative products.

This project will look for preliminary evidence of sensory variation between standard and selectively bred oysters sufficient to warrant further investigation. At least, it is necessary to ensure that selection within the oyster breeding programs does not diminish marketability characteristics.

Spawning and associated reduction in marketability is often at variance with demand for table oysters , and the possibility of selecting for lines with slower/faster maturation or which have an extended reproductive peak would provide growers with better control.

There have been suggestions that selected broodstock are more difficult to condition. This must be investigated to avoid what could become a serious future limitation of the breeding programs.

The Economic Weights Model developed in FRDC 2006/227 identified the time required to reach suitable shell size and the time required to reach a suitable market condition as traits under different genetic control. The model needs refinement by determining the relationship between the two traits. In order to accurately put economic weights on growth time and condition time it is important to measure this relationship for both Pacific and SRO.

Near Infra-red Spectroscopy (NIRS) offers the ability to perform a wide range of otherwise expensive biochemical measures of condition rapidly and cost efficiently.

Mortality is a serious, ongoing problem for Pacific oysters, particularly in SA and not confined to ASI stock. While the syndrome is undefined, there is evidence that susceptibility differs between ASI lines and that the difference is partly genetic (Ryan – unpublished; Pierre Boudry).

This project seeks to develop selection methods to enhance reproductive conditioning, marketability and survival and to develop oyster families which increasingly display these features.

Objectives

1. By January 2011 to have validated the use of NIRS in Pacific and Sydney rock oysters by establishing calibration models which can be used as a rapid and low cost tool for chemical analysis.
2. By January 2011 to have established specifications for the inclusion of Sydney rock oyster data within the project data management system.
3. By the end of the project to have quantified the relationship between size/age and market condition of oysters and for Pacific oysters to have incorporated this into the existing economic model to assist selection decisions within the ASI selective breeding program.
4. By the end of the project to have determined the potential genetic gains through selective breeding for reproductive condition, market condition and survival.
5. By the end of the project to have prepared a breeding strategy which describes how these characteristics can be incorporated into the ASI and SOCo selective breeding programs.
6. By the end of the project to have determined if there is evidence of differences in sensory attributes between standard commercial and selected oyster lines sufficient to warrant further investigation.

Seafood CRC: Australian edible oyster industry business plan

Project number: 2009-729
Project Status:
Completed
Budget expenditure: $45,950.34
Principal Investigator: Shane L. Comiskey
Organisation: Pinnacle Agribusiness
Project start/end date: 30 Apr 2009 - 29 Nov 2009
Contact:
FRDC

Need

The project aims to a) resolve a lack of direction for the oyster industry's R & D investment and b)
provide direction for the industry's growth. In order to construct this it is essential to examine:
• Market development
• Production efficiencies
• Supply chain management
• Environmental sustainability
• Community perception
• Industry structure
• Human capital
• Regulatory environment
• Financial performance

The overarching objective is to facilitate industry growth, value and increase farm profitability, hence the reason for a Business Plan rather than a strategic plan.

The Consortium has purposely named the project ‘Business Plan’ as it needed a plan that;
• is more than a strategic plan confined to R & D purposes
• will contain achievable profitability and growth goals having examined industry financials and other
constraints
• will propose models for conducting the future ‘business’ of the oyster industry, one of which is likely to
be a new incorporated national entity

Each state has varying levels of strategic plans, some designed for policy direction, others for R&D, but
none examine the industry at a national level. To assist industry set future strategies an analysis of the
national industry and development of a 5 year business plan is required. The business plan will be used
to guide industry advocacy, policy and R&D groups at a state and national level.

Objectives

1. Create a 5 Year Business Plan, encompassing Sydney Rock and Pacific Oysters in all oyster producing states, containing a series of national prioritised strategies and objectives in each of the key areas: Market development, Production efficiencies, Supply chain management, Environmental sustainability, Community perception, Industry structure, Human capital, Regulatory environment and Financial performance
2. Recommend actions to each of the prioritized strategies within the business plan to provide direction to facilitate industry growth, value and increase farm profitability through the 5 year Business Plan
3. Recommend and prioritise actions for industry R & D, policy and advocacy work through the 5 Year Business Plan

Final report

ISBN: 978-0-9806740-1-9
Author: CDI Pinnacle Management
Final Report • 2010-01-01 • 644.43 KB
2009-729-DLD.pdf

Summary

The Australian oyster industry comprises approximately 550+ individuals and businesses located principally in three states, NSW, South Australia and Tasmania. A predominately family owned, owner-operated industry in 2007, the industry had a projected net farm gate value of between $90 and $100 million. Including owner operators, the industry employs in the vicinity of 2,000 full and part time employees and owners.

This Business Plan provides a national Business R&D plan to the Australian oyster growing sector for the period 2010-2014.

The Business Plan lists 3 core objectives for the Oyster Consortium to address.

  1. To sustainably increase industry production to 20 million dozen, net profit by 10% and industry Gross Value of Production (GVP) to $120 million per annum.
  2. To increase oyster consumption by 13% to 0.93 dozen per capita and achieve an 80% satisfaction rating from our markets and customers through the supply of consistently high quality oysters.
  3. Through the formation of a national industry organization, build capacity, leadership and confidence in the industry through the services it provides to growers and others.
View Filter

Species